On trigonometric intertwining vectors and non-dynamical R-matrix for the Ruijs']jsenaars model

被引:38
作者
Antonov, A
Hasegawa, K
Zabrodin, A
机构
[1] LD LANDAU THEORET PHYS INST, MOSCOW 117940, RUSSIA
[2] TOHOKU UNIV, INST MATH, SENDAI, MIYAGI 980, JAPAN
[3] JOINT INST CHEM PHYS, MOSCOW 117334, RUSSIA
[4] INST THEORET & EXPT PHYS, MOSCOW 117259, RUSSIA
基金
俄罗斯基础研究基金会;
关键词
trigonometric Rui[!text type='js']js[!/text]enaars model; vertex-face correspondence; quantum L-operator;
D O I
10.1016/S0550-3213(97)00520-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We elaborate on the trigonometric Version of intertwining Vectors and factorized L-operators. The starting point is the corresponding elliptic construction with Belavin's R-matrix. The naive trigonometric limit is singular and a careful analysis is needed. It is shown that the construction admits several different trigonometric degenerations. As a by-product, a quantum Lax operator for the trigonometric Ruijsenaars model intertwined by a non-dynamical R-matrix is obtained. The latter differs from the standard trigonometric R-matrix of A(n) type. A connection with the dynamical R-matrix approach is discussed. (C) 1997 Elsevier Science B.V. PACS: 11.10.-z.
引用
收藏
页码:747 / 770
页数:24
相关论文
共 33 条