On the Exact Traveling Wave Solutions of (2+1)-Dimensional Higher Order Broer-Kaup Equation

被引:2
作者
Li, Jibin [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Kunming Univ Sci & Technol, Dept Math, Kunming 650093, Yunnan, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2014年 / 24卷 / 01期
基金
中国国家自然科学基金;
关键词
(2+1)-dimensional higher order Broer-Kaup equation; exact traveling wave solution; integrable system; kink wave solution; periodic wave solution; SOLITON-LIKE; SYSTEM;
D O I
10.1142/S0218127414500072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the dynamical behavior and exact parametric representations of all traveling wave solutions for (2 + 1)-dimensional higher order Broer-Kaup equation. By using the method of dynamical systems, under different parametric conditions, for the solution component U, exact monotonic and nonmonotonic kink wave solutions, two-peak wave solutions, periodic wave solutions, as well as unbounded traveling wave solutions are obtained. Exact wave profiles of traveling wave solutions for all solution components U, V, W, P are shown.
引用
收藏
页数:10
相关论文
共 8 条
[1]  
Bai CL, 2001, COMMUN THEOR PHYS, V35, P409
[2]   A simple and unified approach to identify integrable nonlinear oscillators and systems [J].
Chandrasekar, VK ;
Pandey, SN ;
Senthilvelan, M ;
Lakshmanan, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (02)
[3]   Solitary wave fission and fusion in the (2+1)-dimensional generalized Broer-Kaup system [J].
Dai, Chaoqing ;
Liu, Cuiyun .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2012, 17 (03) :271-279
[4]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
[5]   Solving the (2+1)-dimensional higher order Broer-Kaup system via a transformation and tanh-function method [J].
Li, DS ;
Gao, F ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2004, 20 (05) :1021-1025
[6]   Infinitely many Lax pairs and symmetry constraints of the KP equation [J].
Lou, SY ;
Hu, XB .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) :6401-6427
[7]   New soliton-like and periodic solution of (2+1)-dimensional higher order Broer-Kaup system [J].
Mei, JQ ;
Li, DS ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2004, 22 (03) :669-674
[8]  
Song G., 2004, INT J PURE APPL MATH, V16, P393