Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review

被引:61
作者
Li, Alan G. [1 ]
West, Alan C. [2 ]
Preindl, Matthias [1 ]
机构
[1] Columbia Univ City New York, Dept Elect Engn, 500 W 120th St,Mudd 1310, New York, NY 10027 USA
[2] Columbia Univ City New York, Dept Chem Engn, 500 W 120th St,Mudd 801, New York, NY 10027 USA
关键词
Battery management systems; Machine learning; Lithium batteries; OF-HEALTH ESTIMATION; GAUSSIAN PROCESS REGRESSION; STATE; MODES; MECHANISMS; DIAGNOSIS; PERFORMANCE; IDENTIFY;
D O I
10.1016/j.apenergy.2022.119030
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion battery (LIB) degradation is often characterized at three distinct levels: mechanisms, modes, and metrics. Recent trends in diagnostics and prognostics have been heavily influenced by machine learning (ML). This review not only provides a unique multi-level perspective on characterizing LIB degradation, but also highlights the role of ML in achieving higher accuracies with accelerated computation times. We survey the state-of-the-art in degradation research and show that existing techniques lay the foundations for a unified ML method - a single tool for characterizing degradation at multiple levels. This could inform optimal management of lithium-ion systems, thus extending lifetimes and reducing costs. We propose a framework for the hypothesized technique using pulse injection, digital-twinning, and neural networks, and identify the challenges and future trends in degradation research.
引用
收藏
页数:9
相关论文
共 116 条
[41]   Degradation mechanisms in Li-ion batteries: a state-of-the-art review [J].
Kabir, M. M. ;
Demirocak, Dervis Emre .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2017, 41 (14) :1963-1986
[42]   Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network [J].
Khaleghi, Sahar ;
Karimi, Danial ;
Beheshti, S. Hamidreza ;
Hosen, Md Sazzad ;
Behi, Hamidreza ;
Berecibar, Maitane ;
Van Mierlo, Joeri .
APPLIED ENERGY, 2021, 282
[43]   Lithium-ion batteries: outlook on present, future, and hybridized technologies [J].
Kim, Taehoon ;
Song, Wentao ;
Son, Dae-Yong ;
Ono, Luis K. ;
Qi, Yabing .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (07) :2942-2964
[44]  
Li AG., 2020, Ph.D. Thesis
[45]   Discrete-time modeling of Li-ion batteries with electrochemical overpotentials including diffusion [J].
Li, Alan G. ;
Mayilvahanan, Karthik ;
West, Alan C. ;
Preindl, Matthias .
JOURNAL OF POWER SOURCES, 2021, 500
[46]   Aging modes analysis and physical parameter identi fi cation based on a simpli fi ed electrochemical model for lithium-ion batteries [J].
Li, Junfu ;
Wang, Dafang ;
Deng, Lei ;
Cui, Zhiquan ;
Lyu, Chao ;
Wang, Lixin ;
Pecht, Michael .
JOURNAL OF ENERGY STORAGE, 2020, 31
[47]  
Li W., 2021, Journal of Power Sources, V506, p230 024
[48]   Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review [J].
Li, Yi ;
Liu, Kailong ;
Foley, Aoife M. ;
Zulke, Alana ;
Berecibar, Maitane ;
Nanini-Maury, Elise ;
Van Mierlo, Joeri ;
Hoster, Harry E. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 113
[49]   Early Prediction of Remaining Useful Life for Grid-Scale Battery Energy Storage System [J].
Lin, Da ;
Zhang, Yang ;
Zhao, Xianhe ;
Tang, Yajie ;
Dai, Zheren ;
Li, Zhihao ;
Wang, Xiangjin ;
Geng, Guangchao .
JOURNAL OF ENERGY ENGINEERING, 2021, 147 (06)
[50]   Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries [J].
Lin, Xianke ;
Khosravinia, Kavian ;
Hu, Xiaosong ;
Li, Ju ;
Lu, Wei .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2021, 87