Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review

被引:61
作者
Li, Alan G. [1 ]
West, Alan C. [2 ]
Preindl, Matthias [1 ]
机构
[1] Columbia Univ City New York, Dept Elect Engn, 500 W 120th St,Mudd 1310, New York, NY 10027 USA
[2] Columbia Univ City New York, Dept Chem Engn, 500 W 120th St,Mudd 801, New York, NY 10027 USA
关键词
Battery management systems; Machine learning; Lithium batteries; OF-HEALTH ESTIMATION; GAUSSIAN PROCESS REGRESSION; STATE; MODES; MECHANISMS; DIAGNOSIS; PERFORMANCE; IDENTIFY;
D O I
10.1016/j.apenergy.2022.119030
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion battery (LIB) degradation is often characterized at three distinct levels: mechanisms, modes, and metrics. Recent trends in diagnostics and prognostics have been heavily influenced by machine learning (ML). This review not only provides a unique multi-level perspective on characterizing LIB degradation, but also highlights the role of ML in achieving higher accuracies with accelerated computation times. We survey the state-of-the-art in degradation research and show that existing techniques lay the foundations for a unified ML method - a single tool for characterizing degradation at multiple levels. This could inform optimal management of lithium-ion systems, thus extending lifetimes and reducing costs. We propose a framework for the hypothesized technique using pulse injection, digital-twinning, and neural networks, and identify the challenges and future trends in degradation research.
引用
收藏
页数:9
相关论文
共 116 条
[1]  
Ahniyaz A, 2021, ADV APPL ENERGY, V4
[2]   A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells [J].
Barai, Anup ;
Uddin, Kotub ;
Dubarry, Matthieu ;
Somerville, Limhi ;
McGordon, Andrew ;
Jennings, Paul ;
Bloom, Ira .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2019, 72 :1-31
[3]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[4]   A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning [J].
Bhowmik, Arghya ;
Castelli, Ivano E. ;
Garcia-Lastra, Juan Maria ;
Jorgensen, Peter Bjorn ;
Winther, Ole ;
Vegge, Tejs .
ENERGY STORAGE MATERIALS, 2019, 21 :446-456
[5]  
Bibak B, 2021, RENEW ENERGY FOCUS, P36
[6]   Degradation diagnostics for lithium ion cells [J].
Birkl, Christoph R. ;
Roberts, Matthew R. ;
McTurk, Euan ;
Bruce, Peter G. ;
Howey, David A. .
JOURNAL OF POWER SOURCES, 2017, 341 :373-386
[7]   Directionality of thermal gradients in lithium-ion batteries dictates diverging degradation modes [J].
Carter, Rachel ;
Kingston, Todd A. ;
Atkinson, Robert W., III ;
Parmananda, Mukul ;
Dubarry, Matthieu ;
Fear, Conner ;
Mukherjee, Partha P. ;
Love, Corey T. .
CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (03)
[8]   A machine learning framework for early detection of lithium plating combining multiple physics-based electrochemical signatures [J].
Chen, Bor-Rong ;
Kunz, M. Ross ;
Tanim, Tanvir R. ;
Dufek, Eric J. .
CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (03)
[9]   Applying Machine Learning to Rechargeable Batteries: From the Microscale to the Macroscale [J].
Chen, Xiang ;
Liu, Xinyan ;
Shen, Xin ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (46) :24354-24366
[10]   Machine Learning-Based Lithium-Ion Battery Capacity Estimation Exploiting Multi-Channel Charging Profiles [J].
Choi, Yohwan ;
Ryu, Seunghyoung ;
Park, Kyungnam ;
Kim, Hongseok .
IEEE ACCESS, 2019, 7 :75143-75152