Iterative multi-task learning for time-series modeling of solar panel PV outputs

被引:52
作者
Shireen, Tahasin [1 ]
Shao, Chenhui [2 ]
Wang, Hui [1 ]
Li, Jingjing [3 ]
Zhang, Xi [4 ]
Li, Mingyang [5 ]
机构
[1] Florida State Univ, Dept Ind & Mfg Engn, 2525 Pottsdamer St, Tallahassee, FL 32310 USA
[2] Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA
[3] Penn State Univ, Dept Ind & Mfg Engn, 310 Leonhard Bldg, University Pk, PA 16802 USA
[4] Peking Univ, Dept Ind Engn & Management, 298 Chengfu Rd, Beijing 100871, Peoples R China
[5] Univ S Florida, Dept Ind & Management Syst Engn, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
Multi-task learning; Time series; Solar panels; Prediction; Forecasting; WAVELET; FORECAST;
D O I
10.1016/j.apenergy.2017.12.058
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Time-series modeling of PV output for solar panels can help solar panel owners understand the power systems' time-varying behavior and be prepared for the load demand. The time-series forecast/prediction can become challenging due to many missing observations or a lack of historical records that are not sufficient to establish statistical models. Increasing PV measurement frequency over a longer period increases the cost in the detection of the PV fluctuation. This paper proposes an efficient approach to iterative multi-task learning for time series (MTL-GP-TS) that improves prediction of the PV output without increasing measurement efforts by sharing the information among PV data from multiple similar solar panels. The proposed iterative MTL-GP-TS model learns/imputes unobserved or missing values in a dataset of time series associated with the solar panel of interest to predict the PV trend. Additionally, the method improves and generalizes the traditional multi-task learning for Gaussian Process to the learning of both global trend and local irregular components in time series. A real-world case study demonstrated that the proposed method could result in substantial improvement of predictions over conventional approaches. The paper also discusses the selection of parameters and data sources when implementing the proposed algorithm.
引用
收藏
页码:654 / 662
页数:9
相关论文
共 50 条
  • [31] Multi-task Learning for Acoustic Modeling Using Articulatory Attributes
    Lee, Yueh-Ting
    Chen, Xuan-Bo
    Lee, Hung-Shin
    Jang, Jyh-Shing Roger
    Wang, Hsin-Min
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 855 - 861
  • [32] A Multi-Task Learning Based Runoff Forecasting Model for Multi-Scale Chaotic Hydrological Time Series
    Hui Zuo
    Gaowei Yan
    Ruochen Lu
    Rong Li
    Shuyi Xiao
    Yusong Pang
    Water Resources Management, 2024, 38 : 481 - 503
  • [33] A Lightweight Self Attention Based Multi-Task Deep Learning Model for Industrial Solar Panel and Environmental Monitoring
    Gangopadhyay, Tuhinangshu
    Meena, Tanushree
    Pal, Debojyoti
    Roy, Sudipta
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [34] MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction
    Ye, Rui
    Dai, Qun
    APPLIED SOFT COMPUTING, 2019, 79 : 227 - 253
  • [35] An End-to-End Scalable Iterative Sequence Tagging with Multi-Task Learning
    Gui, Lin
    Du, Jiachen
    Zhao, Zhishan
    He, Yulan
    Xu, Ruifeng
    Fan, Chuang
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2018, PT II, 2018, 11109 : 288 - 298
  • [36] Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts
    Ma, Jiaqi
    Zhao, Zhe
    Yi, Xinyang
    Chen, Jilin
    Hong, Lichan
    Chi, Ed H.
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1930 - 1939
  • [37] Information Cascades Modeling via Deep Multi-Task Learning
    Chen, Xueqin
    Zhang, Kunpeng
    Zhou, Fan
    Trajcevski, Goce
    Zhong, Ting
    Zhang, Fengli
    PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 885 - 888
  • [38] Multi-Task Representation Learning with Temporal Attention for Zero-Shot Time Series Anomaly Detection
    Nivarthi, Chandana Priya
    Huang, Zhixin
    Gruhl, Christian
    Sick, Bernhard
    2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,
  • [39] Multi-Task Time Series Forecasting Based on Graph Neural Networks
    Han, Xiao
    Huang, Yongjie
    Pan, Zhisong
    Li, Wei
    Hu, Yahao
    Lin, Gengyou
    ENTROPY, 2023, 25 (08)
  • [40] Co-evolutionary multi-task learning with predictive recurrence for multi-step chaotic time series prediction
    Chandra, Rohitash
    Ong, Yew-Soon
    Goh, Chi-Keong
    NEUROCOMPUTING, 2017, 243 : 21 - 34