C1-persistently continuum-wise expansive homoclinic classes and recurrent sets

被引:8
作者
Das, Tarun [1 ]
Lee, Keonhee [2 ]
Lee, Manseob [3 ]
机构
[1] Maharaja Sayajirao Univ Baroda, Fac Sci, Dept Math, Vadodara 390002, India
[2] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
[3] Mokwon Univ, Dept Math, Taejon 302729, South Korea
基金
新加坡国家研究基金会;
关键词
Chain component; Chain recurrent set; Continuum-wise expansivity; Dominated splitting; Homoclinic class; Hyperbolicity; SHADOWABLE CHAIN COMPONENTS; DIFFEOMORPHISMS; HOMEOMORPHISMS; STABILITY;
D O I
10.1016/j.topol.2012.11.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a hyperbolic periodic point of a diffeomorphism f on a C-infinity closed manifold M. Introducing here the notion of C-1-persistently continuum-wise expansivity, we show that if the homoclinic class H(p, f) of f associated to p is C-1-persistently continuum-wise expansive then (i) it admits a dominated splitting and (ii) it is hyperbolic provided it satisfies the chain condition. Moreover, we show that the chain recurrent set R(f) of f is C-1-persistently continuum-wise expansive if and only if f satisfies both Axiom A and the no-cycle condition. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:350 / 359
页数:10
相关论文
共 19 条
[1]   Generic robustness of spectral decompositions [J].
Abdenur, F .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (02) :213-224
[2]   Recurrence and genericty [J].
Bonatti, C ;
Crovisier, S .
INVENTIONES MATHEMATICAE, 2004, 158 (01) :33-104
[4]   DIFFEOMORPHISMS IN F1 (M) SATISFY AXIOM A [J].
HAYASHI, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 :233-253
[5]   CONTINUUM-WISE EXPANSIVE HOMEOMORPHISMS [J].
KATO, H .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (03) :576-598
[6]   CONCERNING CONTINUUM-WISE FULLY EXPANSIVE HOMEOMORPHISMS OF CONTINUA [J].
KATO, H .
TOPOLOGY AND ITS APPLICATIONS, 1993, 53 (03) :239-258
[7]   On indecomposability and composants of chaotic continua, II [J].
Kato, Hisao .
TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (05) :647-652
[8]   HYPERBOLICITY OF C1-STABLY EXPANSIVE HOMOCLINIC CLASSES [J].
Lee, Keonhee ;
Lee, Manseob .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (03) :1133-1145
[9]  
Lewowicz J., 1989, Bol. Soc. Brasil. Mat, V20, P113, DOI [10.1007/BF02585472, DOI 10.1007/BF02585472]
[10]   CONTRIBUTIONS TO THE STABILITY CONJECTURE [J].
MANE, R .
TOPOLOGY, 1978, 17 (04) :383-396