A 22 to 26.5 Gb/s Optical Receiver With All-Digital Clock and Data Recovery in a 65 nm CMOS Process

被引:42
作者
Chu, Sang-Hyeok [1 ,2 ]
Bae, Woorham [1 ,2 ]
Jeong, Gyu-Seob [1 ,2 ]
Jang, Sungchun [1 ,2 ]
Kim, Sungwoo [1 ,2 ]
Joo, Jiho [3 ]
Kim, Gyungock [3 ]
Jeong, Deog-Kyoon [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 151742, South Korea
[2] Seoul Natl Univ, Interuniv Semicond Res Ctr, Seoul 151742, South Korea
[3] Elect & Telecommun Res Inst, Taejon 305700, South Korea
关键词
All-digital clock and data recovery (AD-CDR); LC oscillator; limiting amplifier (LA); optical receiver; quadrature digitally controlled oscillator (QDCO); transimpedance amplifier (TIA); TRANSIMPEDANCE AMPLIFIER; FRONT-END; TRANSCEIVER; TECHNOLOGY; DESIGN; NOISE;
D O I
10.1109/JSSC.2015.2465843
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a 22 to 26.5 Gb/s optical receiver with an all-digital clock and data recovery (AD-CDR) fabricated in a 65 nm CMOS process. The receiver consists of an optical front-end and a half-rate bang-bang clock and data recovery circuit. The optical front-end achieves low power consumption by using inverter-based amplifiers and realizes sufficient bandwidth by applying several bandwidth extension techniques. In addition, in order to minimize additional jitter at the front-end, not only magnitude and bandwidth but also group-delay responses are considered. The AD-CDR employs an LC quadrature digitally controlled oscillator (LC-QDCO) to achieve a high phase noise figure-of-merit at tens of gigahertz. The recovered clock jitter is 1.28 ps(rms) and the measured jitter tolerance exceeds the tolerance mask specified in IEEE 802.3ba. The receiver sensitivity is 106 and 184 mu A(pk-pk) for a bit error rate of at 10(-12) at data rates of 25 and 26.5 Gb/s, respectively. The entire receiver chip occupies an active die area of 0.75 mm(2) and consumes 254 mW at a data rate of 26.5 Gb/s. The energy efficiencies of the front-end and entire receiver at 26.5 Gb/s are 1.35 and 9.58 pJ/bit, respectively.
引用
收藏
页码:2603 / 2612
页数:10
相关论文
共 42 条
  • [1] Analysis and design of a 1.8-GHz CMOS LC quadrature VCO
    Andreani, P
    Bonfanti, A
    Romanò, L
    Samori, C
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2002, 37 (12) : 1737 - 1747
  • [2] Andreani P., 2002, SOL STAT CIRC C 2002, P815
  • [3] [Anonymous], 2002, HFAN 09 0 1 NRZ BAND
  • [4] [Anonymous], P IEEE INT S CIRC SY
  • [5] A 28-Gb/s 4-Tap FFE/15-Tap DFE Serial Link Transceiver in 32-nm SOI CMOS Technology
    Bulzacchelli, John F.
    Menolfi, Christian
    Beukema, Troy J.
    Storaska, Daniel W.
    Hertle, Juergen
    Hanson, David R.
    Hsieh, Ping-Hsuan
    Rylov, Sergey V.
    Furrer, Daniel
    Gardellini, Daniele
    Prati, Andrea
    Morf, Thomas
    Sharma, Vivek
    Kelkar, Ram
    Ainspan, Herschel A.
    Kelly, William R.
    Chieco, Leonard R.
    Ritter, Glenn A.
    Sorice, John A.
    Garlett, Jon D.
    Callan, Robert
    Braendli, Matthias
    Buchmann, Peter
    Kossel, Marcel
    Toifl, Thomas
    Friedman, Daniel J.
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (12) : 3232 - 3248
  • [6] CMOS Technology Scaling Considerations for Multi-Gbps Optical Receivers With Integrated Photodetectors
    Carusone, Anthony Chan
    Yasotharan, Hemesh
    Kao, Tony
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (08) : 1832 - 1842
  • [7] Cherry E.M., 1963, IEE Proc. B, V110, P375, DOI DOI 10.1049/PIEE.1963.0050
  • [8] 4x25 Gb/s Transceiver With Optical Front-end for 100 GbE System in 65 nm CMOS Technology
    Chiang, Ping-Chuan
    Jiang, Jhih-Yu
    Hung, Hao-Wei
    Wu, Chin-Yang
    Chen, Gaun-Sing
    Lee, Jri
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (02) : 573 - 585
  • [9] Chu SH, 2014, IEEE ASIAN SOLID STA, P101, DOI 10.1109/ASSCC.2014.7008870
  • [10] Da Dalt N., 2006, 2006 IEEE INT SOL ST, P669