Converting multilevel nonclassicality into genuine multipartite entanglement

被引:34
作者
Regula, Bartosz [1 ,2 ]
Piani, Marco [3 ,4 ]
Cianciaruso, Marco [1 ,2 ]
Bromley, Thomas R. [1 ,2 ]
Streltsov, Alexander [5 ,6 ]
Adesso, Gerardo [1 ,2 ]
机构
[1] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
[2] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sy, Univ Pk, Nottingham NG7 2RD, England
[3] Univ Strathclyde, SUPA, Glasgow G4 0NG, Lanark, Scotland
[4] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[5] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80233 Gdansk, Poland
[6] Natl Quantum Informat Ctr Gdansk, PL-81824 Sopot, Poland
基金
欧洲研究理事会;
关键词
resource theories; quantum entanglement; nonclassicality; quantum coherence; QUANTUM; COHERENT; STATES;
D O I
10.1088/1367-2630/aaae9d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Characterizing genuine quantum resources and determining operational rules for their manipulation are crucial steps to appraise possibilities and limitations of quantum technologies. Two such key resources are nonclassicality, manifested as quantum superposition between reference states of a single system, and entanglement, capturing quantum correlations among two or more subsystems. Here we present a general formalism for the conversion of nonclassicality into multipartite entanglement, showing that a faithful reversible transformation between the two resources is always possible within a precise resource-theoretic framework. Specializing to quantum coherence between the levels of a quantum system as an instance of nonclassicality, we introduce explicit protocols for such a mapping. Wefurther show that the conversion relates multilevel coherence and multipartite entanglement not only qualitatively, but also quantitatively, restricting the amount of entanglement achievable in the process and in particular yielding an equality between the two resources when quantified by fidelity-based geometric measures.
引用
收藏
页数:13
相关论文
共 67 条
[1]  
Aberg J., 2006, ARXIVQUANTPH0612146
[2]   Measures and applications of quantum correlations [J].
Adesso, Gerardo ;
Bromley, Thomas R. ;
Cianciaruso, Marco .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (47)
[3]  
[Anonymous], 2016, ARXIV160901609
[4]  
[Anonymous], 2013, CHIC J THEOR COMPUT
[5]  
[Anonymous], 2011, Quantum Computation and Quantum Information: 10th Anniversary Edition
[6]  
[Anonymous], 2017, ARXIV170504343
[7]   Computable measure of nonclassicality for light -: art. no. 173602 [J].
Asbóth, JK ;
Calsamiglia, J ;
Ritsch, H .
PHYSICAL REVIEW LETTERS, 2005, 94 (17)
[8]   Quantifying Coherence [J].
Baumgratz, T. ;
Cramer, M. ;
Plenio, M. B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[9]  
Bengtsson I., 2007, GEOMETRY QUANTUM STA
[10]   Reversible Framework for Quantum Resource Theories [J].
Brandao, Fernando G. S. L. ;
Gour, Gilad .
PHYSICAL REVIEW LETTERS, 2015, 115 (07)