The Rogers-Ramanujan-Gordon theorem for overpartitions

被引:20
作者
Chen, William Y. C. [1 ]
Sang, Doris D. M. [2 ]
Shi, Diane Y. H. [3 ]
机构
[1] Nankai Univ, Ctr Combinator, LPMC TJKLC, Tianjin 300071, Peoples R China
[2] Dongbei Univ Finance & Econ, Sch Math & Quantitat Econ, Liaoning 116025, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
基金
美国国家科学基金会;
关键词
IDENTITIES; MODULI;
D O I
10.1112/plms/pds056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B-k,B- i(n) be the number of partitions of n with certain difference condition and let A(k, i)(n) be the number of partitions of n with certain congruence condition. The Rogers-Ramanujan-Gordon theorem states that B-k,B- i(n)=A(k, i)(n). Lovejoy obtained an overpartition analogue of the Rogers-Ramanujan-Gordon theorem for the cases i=1 and i=k. We find an overpartition analogue of the Rogers-Ramanujan-Gordon theorem in the general case. Let D-k,D- i(n) be the number of overpartitions of n satisfying certain difference condition and C-k,C- i(n) be the number of overpartitions of n whose non-overlined parts satisfy certain congruence condition. We show that C-k,C- i(n)=D-k,D- i(n). By using a function introduced by Andrews, we obtain a recurrence relation that implies that the generating function of D-k,D- i(n) equals the generating function of C-k,C- i(n). By introducing the Gordon marking of an overpartition, we find a generating function formula for D-k,D- i(n) that can be considered an overpartition analogue of an identity of Andrews for ordinary partitions.
引用
收藏
页码:1371 / 1393
页数:23
相关论文
共 18 条
[1]  
Andrews G.E., 1975, Theory and application of special functions, V35, P191
[2]   AN ANALYTIC PROOF OF ROGERS-RAMANUJAN-GORDON IDENTITIES [J].
ANDREWS, GE .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (04) :844-&
[3]   ANALYTIC GENERALIZATION OF ROGERS-RAMANUJAN IDENTITIES FOR ODD MODULI [J].
ANDREWS, GE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974, 71 (10) :4082-4085
[4]  
[Anonymous], 1998, CAMBRIDGE MATH LIB
[5]  
BRESSOUD DM, 1980, MEM AM MATH SOC, V24, P1
[6]   GENERALIZATION OF THE ROGERS-RAMANUJAN IDENTITIES FOR ALL MODULI [J].
BRESSOUD, DM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1979, 27 (01) :64-68
[7]   Anti-lecture hall compositions and overpartitions [J].
Chen, William Y. C. ;
Sang, Doris D. M. ;
Shi, Diane Y. H. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (04) :1451-1464
[8]   Overpartitions [J].
Corteel, S ;
Lovejoy, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) :1623-1635
[9]   An extension to overpartitions of the Rogers-Ramanujan identities for even moduli [J].
Corteel, Sylvie ;
Lovejoy, Jeremy ;
Mallet, Olivier .
JOURNAL OF NUMBER THEORY, 2008, 128 (06) :1602-1621
[10]   Overpartitions, lattice paths, and Rogers-Ramanujan identities [J].
Corteel, Sylvie ;
Mallet, Olivier .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (08) :1407-1437