Artificial intelligence and deep learning in ophthalmology - present and future (Review)

被引:43
作者
Moraru, Andreea Dana [1 ,2 ]
Costin, Danut [1 ,2 ]
Moraru, Radu Lucian [3 ]
Branisteanu, Daniel Constantin [1 ,4 ]
机构
[1] Grigore T Popa Univ Med & Pharm, Dept Ophthalmol, 16 Univ St, Iasi 700115, Romania
[2] N Oblu Clin Hosp, Dept Ophthalmol, Iasi 700309, Romania
[3] Dept Otorhinolaryngol, Transmed Expert, Iasi 700011, Romania
[4] Retina Ctr, Eye Clin, Iasi 700126, Romania
关键词
artificial intelligence; deep learning; convolutional neural networks; machine learning; ophthalmology; OCT; image processing; image analysis; RETINAL LAYER BOUNDARIES; DIABETIC-RETINOPATHY; MACULAR DEGENERATION; AUTOMATED IDENTIFICATION; IMAGING BIOMARKERS; PLUS DISEASE; SEGMENTATION; DIAGNOSIS; PREMATURITY; ALGORITHM;
D O I
10.3892/etm.2020.9118
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Since its introduction in 1959, artificial intelligence technology has evolved rapidly and helped benefit research, industries and medicine. Deep learning, as a process of artificial intelligence (AI) is used in ophthalmology for data analysis, segmentation, automated diagnosis and possible outcome predictions. The association of deep learning and optical coherence tomography (OCT) technologies has proven reliable for the detection of retinal diseases and improving the diagnostic performance of the eye's posterior segment diseases. This review explored the possibility of implementing and using AI in establishing the diagnosis of retinal disorders. The benefits and limitations of AI in the field of retinal disease medical management were investigated by analyzing the most recent literature data. Furthermore, the future trends of AI involvement in ophthalmology were analyzed, as AI will be part of the decision-making regarding the scientific investigation, diagnosis and therapeutic management.
引用
收藏
页码:3469 / 3473
页数:5
相关论文
共 55 条
[11]   Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks [J].
Burlina, Philippe M. ;
Joshi, Neil ;
Pekala, Michael ;
Pacheco, Katia D. ;
Freund, David E. ;
Bressler, Neil M. .
JAMA OPHTHALMOLOGY, 2017, 135 (11) :1170-1176
[12]   Automated Identification of Lesion Activity in Neovascular Age-Related Macular Degeneration [J].
Chakravarthy, Usha ;
Goldenberg, Dafna ;
Young, Graham ;
Havilio, Moshe ;
Rafaeli, Omer ;
Benyamini, Gidi ;
Loewenstein, Anat .
OPHTHALMOLOGY, 2016, 123 (08) :1731-1736
[13]   Validation of the dermatology-specific proxy instrument the Infants and Toddlers Dermatology Quality of Life [J].
Chernvshov, P., V ;
Sampogna, F. ;
Pustisek, N. ;
Marinovic, B. ;
Manolache, L. ;
Suru, A. ;
Salavastru, C. M. ;
Tiplica, G. S. ;
Stoleriu, Gabriela ;
Kakourou, T. ;
Alexopoulos, A. ;
Nasi, L. ;
Szepietowski, J. C. ;
Trzeciak, M. ;
Nowicki, R. J. ;
Chubar, O., V ;
Chernvshov, A., V ;
Pochvnok, T., V .
JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2019, 33 (07) :1405-1411
[14]   Interexpert agreement of plus disease diagnosis in retinopathy of prematurity [J].
Chiang, Michael F. ;
Jiang, Lei ;
Gelman, Rony ;
Du, Yunling E. ;
Flynn, John T. .
ARCHIVES OF OPHTHALMOLOGY, 2007, 125 (07) :875-880
[15]   Introduction to Machine Learning for Ophthalmologists [J].
Consejo, Alejandra ;
Melcer, Tomasz ;
Rozema, Jos J. .
SEMINARS IN OPHTHALMOLOGY, 2019, 34 (01) :19-41
[16]   The Management of Lamellar Macular Holes: A Review [J].
Danielescu, Ciprian ;
Stanca, Horia Tudor ;
Balta, Florian .
JOURNAL OF OPHTHALMOLOGY, 2020, 2020
[17]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[18]   Automated segmentation of the macula by optical coherence tomography [J].
Fabritius, Tapio ;
Makita, Shuichi ;
Miura, Masahiro ;
Myllyla, Risto ;
Yasuno, Yoshiaki .
OPTICS EXPRESS, 2009, 17 (18) :15659-15669
[19]   Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search [J].
Fang, Leyuan ;
Cunefare, David ;
Wang, Chong ;
Guymer, Robyn H. ;
Li, Shutao ;
Farsiu, Sina .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (05) :2732-2744
[20]   Automated Identification of Diabetic Retinopathy Using Deep Learning [J].
Gargeya, Rishab ;
Leng, Theodore .
OPHTHALMOLOGY, 2017, 124 (07) :962-969