Wearable Devices for the Assessment of Cognitive Effort for Human-Robot Interaction

被引:35
|
作者
Villani, Valeria [1 ]
Righi, Massimiliano [1 ]
Sabattini, Lorenzo [1 ]
Secchi, Cristian [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Sci & Methods Engn, I-42122 Reggio Emilia, Italy
关键词
Biomedical monitoring; Heart rate variability; Human-robot interaction; Service robots; Wearable systems; human-robot interaction; affective design; human factors; HEART-RATE; WORKLOAD; STRESS; HRV; VALIDATION;
D O I
10.1109/JSEN.2020.3001635
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is motivated by the need of assessing cognitive effort in affective robotics. In this context, the ultimate goal is that of assessing the mental state while the subject is interacting with a robotic system, by gathering implicit and objective information unobtrusively. To this end, we focus on wearable devices that do not affect the interaction of a human with a robot. In particular, we consider some commercial multi-purpose wearable devices, such as an armband, a smartwatch and a chest strap, and compare them in terms of accuracy in detecting cognitive effort. In an experiment setting, thirty participants were exposed to an increase in their cognitive effort by means of standard cognitive tests. Mental fatigue was estimated by measuring cardiac activity, in terms of heart rate and heart rate variability. The results have shown that the analysis of heart rate variability measured by the chest strap provides the most accurate detection of cognitive effort. Nevertheless, also measurements by the armband are sensitive to cognitive effort.
引用
收藏
页码:13047 / 13056
页数:10
相关论文
共 50 条
  • [21] On Interaction Quality in Human-Robot Interaction
    Bensch, Suna
    Jevtic, Aleksandar
    Hellstrom, Thomas
    ICAART: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1, 2017, : 182 - 189
  • [22] Spatial Ability in Military Human-Robot Interaction: A State-of-the-Art Assessment
    Hidalgo, Maartje
    Reinerman-Jones, Lauren
    Barber, Daniel
    ENGINEERING PSYCHOLOGY AND COGNITIVE ERGONOMICS, EPCE 2019, 2019, 11571 : 363 - 380
  • [23] Human-Robot Proxemics: Physical and Psychological Distancing in Human-Robot Interaction
    Mumm, Jonathan
    Mutlu, Bilge
    PROCEEDINGS OF THE 6TH ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTIONS (HRI 2011), 2011, : 331 - 338
  • [24] Wearable Sensors for Human-Robot Walking Together
    Moschetti, Alessandra
    Cavallo, Filippo
    Esposito, Dario
    Penders, Jacques
    Di Nuovo, Alessandro
    ROBOTICS, 2019, 8 (02)
  • [25] Expressiveness in human-robot interaction
    Marti, Patrizia
    Giusti, Leonardo
    Pollini, Alessandro
    Rullo, Alessia
    INTERACTION DESIGN AND ARCHITECTURES, 2008, (5-6) : 93 - 98
  • [26] Communication in Human-Robot Interaction
    Andrea Bonarini
    Current Robotics Reports, 2020, 1 (4): : 279 - 285
  • [27] The Effect of Multiple Robot Interaction on Human-Robot Interaction
    Yang, Jeong-Yean
    Kwon, Dong-Soo
    2012 9TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAL), 2012, : 30 - 33
  • [28] The Science of Human-Robot Interaction
    Kiesler, Sara
    Goodrich, Michael A.
    ACM TRANSACTIONS ON HUMAN-ROBOT INTERACTION, 2018, 7 (01)
  • [29] Online Assessment of Human-Robot Interaction for Hybrid Control of Walking
    del-Ama, Antonio J.
    Moreno, Juan C.
    Gil-Agudo, Angel
    de-los-Reyes, Ana
    Pons, Jose L.
    SENSORS, 2012, 12 (01) : 215 - 225
  • [30] Sound in Human-Robot Interaction
    Pelikan, Hannah
    Robinson, Frederic Anthony
    Keevallik, Leelo
    Velonaki, Mari
    Broth, Mathias
    Bown, Oliver
    HRI '21: COMPANION OF THE 2021 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION, 2021, : 706 - 708