Electrochemical Deposition of Magnesium on SiC Fibers from the LiCl-KCl-MgCl2 Molten Salt

被引:5
|
作者
Chen, Zeng [1 ,2 ]
Li, Shengjun [1 ,2 ]
Wang, Yumin [3 ]
Li, Wei [1 ,2 ]
Wei, Chaochao [1 ,2 ]
Kong, Wenping [1 ,2 ]
Jia, Xiyang [1 ,2 ]
Pei, Qingqing [1 ,2 ]
Zhang, Weifeng [1 ,2 ]
机构
[1] Key Lab Photovolta Mat Henan Prov, Kaifeng 475001, Peoples R China
[2] Sch Phys & Elect, Kaifeng 475001, Peoples R China
[3] Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
关键词
METAL-MATRIX COMPOSITES; ELECTRODEPOSITION; FABRICATION; LI;
D O I
10.1149/2.0971609jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The preparation of Mg/SiC fiber precursor is the key process for the application of SiC fiber in the Mg alloys. Electrochemical deposition method was firstly adopted for the preparation of Mg/SiC fiber precursor in the LiCl-KCl molten salt. However, metal Li will be deposited prior to the deposition of Mg to form Li-C alloys with the carbon layer on the surface of SiC fiber due to the under potential deposition of Li+ ion. A Cu intermediate layer was introduced to avoid the formation of Li-C alloys, so that SiC fiber could be stable in a wide electrochemical window in the LiCl-KCl molten salt. A thin Cu layer was coated on SiC fiber using chemical plating method. The effect of NaOH concentration on the Cu coating was investigated and bright Cu coating was obtained. The electrochemical deposition process of Mg2+ ion was investigated through cyclic voltammetry and the detailed deposition parameters were obtained. Mg/SiC fiber precursor was prepared using pulse current electrodeposition method following the deposition parameters obtained by cyclic voltammetry. The morphology and microstructure of SiC/Mg fiber were explored through SEM. After the optimization of electrodeposition condition, compact and even Mg layer were prepared on SiC fiber. (C) 2016 The Electrochemical Society. All rights reserved.
引用
收藏
页码:D522 / D525
页数:4
相关论文
共 50 条
  • [1] Electrochemical Codeposition of Al-Li-Mg Alloys at Solid Aluminum Electrode from LiCl-KCl-MgCl2 Molten Salt System
    Ye, Ke
    Zhang, Mi Lin
    Chen, Ye
    Han, Wei
    Yan, Yong De
    Cao, Peng
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2010, 41 (03): : 691 - 698
  • [3] Electrochemical codeposition of typical α + β phases Mg-Li alloys from the molten LiCl-KCl-MgCl2 system
    Ke Ye
    Ye Chen
    Milin Zhang
    Rare Metals, 2010, 29 : 198 - 203
  • [4] Electrochemical Codeposition of Al-Li-Mg Alloys at Solid Aluminum Electrode from LiCl-KCl-MgCl2 Molten Salt System
    Ke Ye
    Mi Lin Zhang
    Ye Chen
    Wei Han
    Yong De Yan
    Peng Cao
    Metallurgical and Materials Transactions B, 2010, 41 : 691 - 698
  • [5] Electrochemical codeposition of typical α plus β phases Mg-Li alloys from the molten LiCl-KCl-MgCl2 system
    Ye Ke
    Chen Ye
    Zhang Milin
    RARE METALS, 2010, 29 (02) : 198 - 203
  • [6] Corrosion Behavior of the Nickel Electrode in LiCl-KCl-MgCl2 Molten Salt in Ni-Mg Alloy formation process
    Sun Jiaqi
    Peng Yaru
    Chen Zeng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (03): : 1 - 13
  • [7] Phase diagram of LiCl-KCl-MgCl2 ternary system in low MgCl2 composition
    Himeji Inst of Technology, Himeji, Japan
    Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1995, 59 (08): : 799 - 805
  • [8] PHASE-DIAGRAM OF LICL-KCL-MGCL2 TERNARY-SYSTEM IN LOW MGCL2 COMPOSITION
    MORISHITA, M
    MURASE, M
    KOYAMA, K
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1995, 59 (08) : 799 - 805
  • [9] Electrochemical codeposition of Mg-Li alloys from a molten KCl-LiCl-MgCl2 system
    Yan, Yongde
    Zhang, Milin
    Han, Wei
    Xue, Yun
    Cao, Dianxue
    Yuan, Yi
    CHEMISTRY LETTERS, 2008, 37 (02) : 212 - 213
  • [10] Study on the preparation of Mg–Li–Mn alloys by electrochemical codeposition from LiCl–KCl–MgCl2–MnCl2 molten salt
    Ke Ye
    Mi Lin Zhang
    Ye Chen
    Wei Han
    Yong De Yan
    Shu Quan Wei
    Li Jun Chen
    Journal of Applied Electrochemistry, 2010, 40 : 1387 - 1393