Fault diagnosis for the motor drive system of urban transit based on improved Hidden Markov Model

被引:42
|
作者
Huang Darong [1 ]
Ke Lanyan [1 ]
Chu Xiaoyan [1 ]
Zhao Ling [1 ]
Mi Bo [1 ]
机构
[1] Chongqing Jiaotong Univ, Inst Informat Sci & Engn, Chongqing 400074, Peoples R China
关键词
Predictive neural network; Intuitionistic fuzzy sets (IFS); Hidden Markov Model (HMM); Fault diagnosis; Motor drive system; CLASSIFICATION;
D O I
10.1016/j.microrel.2018.01.017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fault diagnosis for the motor drive system of urban rail transit could reduce the hidden danger and avoid the disaster events as far as possible. In this paper, an improved Hidden Markov Model (HMM) algorithm is proposed for fault diagnosis of motors equipment for urban rail transit. In this approach, the initial value for observation matrix B in HMM is selected based on the predictive neural network and intuitionistic fuzzy sets. Firstly, by predictive neural network the observation probability matrix B is described qualitatively based on its mathematical explanation. Then, the quartering approach is introduced to define the rules between non-membership degree and observation probability matrix B, which obtains the matrix B quantitatively. Next, the selection algorithm for matrix B is given. Finally, the experiments about the motor drive system fault diagnosis of the urban rail transit are made to prove the feasibility for the proposed algorithm.
引用
收藏
页码:179 / 189
页数:11
相关论文
共 50 条
  • [11] FAULT DIAGNOSIS SYSTEM OF ROTATING MACHINES USING HIDDEN MARKOV MODEL (HMM)
    Aditiya, Nur Ashar
    Dharmawan, Muhammad Rizky
    Darojah, Zaqiatud
    Sanggar, Raden D.
    2017 INTERNATIONAL ELECTRONICS SYMPOSIUM ON KNOWLEDGE CREATION AND INTELLIGENT COMPUTING (IES-KCIC), 2017, : 177 - 181
  • [12] Robot Fault Diagnosis Based on Wavelet Packet Decomposition and Hidden Markov Model
    Wu, You
    Fu, Zhuang
    Liu, Shuwei
    Fei, Jian
    Yang, Zhen
    Zheng, Hui
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2016, PT II, 2016, 9835 : 135 - 143
  • [13] Bearing fault diagnosis method based on GMM and Coupled Hidden Markov model
    Cao, Liang
    Xia, Yubin
    Shen, Yong
    Wang, Jinglin
    Shan, Tianmin
    Lin, Zeli
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 932 - 936
  • [14] FAULT DIAGNOSIS APPROACH BASED ON HIDDEN MARKOV MODEL AND SUPPORT VECTOR MACHINE
    LIU Guanjun LIU Xinmin QIU Jing HU Niaoqing College of Mechatronics Engineering and Automation
    Chinese Journal of Mechanical Engineering, 2007, (05) : 92 - 95
  • [15] Fault Diagnosis Method Based on Diffusion Maps and Hidden Markov Model for TE Process
    Liu, Baoqi
    Xu, Jinxue
    Li, Yuan
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 7253 - 7258
  • [16] Fault Diagnosis and Prognosis of Bearing Based on Hidden Markov Model with Multi-Features
    Zhao, Weiguo
    Shi, Tiancong
    Wang, Liying
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (01) : 71 - 84
  • [17] Research on fault diagnosis for gear-box based on factorial hidden Markov model
    Wang Xue
    Xie Zhijiang
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MECHANICAL TRANSMISSIONS, VOLS 1 AND 2, 2006, : 1308 - 1311
  • [18] Fault Pattern Recognition Based on Hidden Markov Model
    刘鑫
    贾云献
    范智滕
    田霞
    张英波
    Journal of Donghua University(English Edition), 2016, 33 (02) : 280 - 283
  • [19] A hidden Markov model-based algorithm for fault diagnosis with partial and imperfect tests
    Ying, J
    Kirubarajan, T
    Pattipati, KR
    Patterson-Hine, A
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2000, 30 (04): : 463 - 473
  • [20] Fault diagnosis of body sensor networks using hidden Markov model
    Haibin Zhang
    Jiajia Liu
    Rong Li
    Hua Le
    Peer-to-Peer Networking and Applications, 2017, 10 : 1285 - 1298