Effect of Doping Metal Oxide in ZnO/SBA-15 on Its Acid-Base Properties and Performance in Ethanol-to-Butadiene Process

被引:9
作者
Tu, Pengxiang [1 ]
Xue, Bing [1 ]
Tong, Yuqin [1 ]
Zhou, Jian [1 ]
He, Yaohui [1 ]
Cheng, Yunhui [1 ]
Ni, Jun [1 ]
Li, Xiaonian [1 ]
机构
[1] Zhejiang Univ Technol, Inst Ind Catalysis, 18 Chaowang Rd, Hangzhou, Peoples R China
来源
CHEMISTRYSELECT | 2020年 / 5卷 / 24期
基金
中国国家自然科学基金;
关键词
Acidity; Basicity; Ethanol-to-Butadiene; Metal oxide; SBA-15; CATALYTIC CONVERSION; ALDOL CONDENSATION; N-BUTANOL; 1,3-BUTADIENE; LEWIS; ZN; ZR; ZEOLITE; SURFACE; CO;
D O I
10.1002/slct.202000637
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Ethanol-to-Butadiene (ETB) process is experiencing a renaissance with the increasing shortage of petroleum-based resources, however, the development of active catalysts for this process still remains sluggish due to the lack of fundamental understanding of the properties of catalysts, especially acidity and basicity. We present here that individual reaction step in the ETB process requires specific acid or/and basic sites with different strengths and densities. Weak acid and moderate basic sites are beneficial for ethanol dehydrogenation, while moderate basic sites with optimal strength are also active for condensation and Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reactions. In contrast, moderate and strong acid sites cause the ethanol dehydration, lowering the selectivity towards 1,3-butadiene (BD) production. Moreover, the selectivity and yield of BD are more dependent on the properties of sites for both condensation and MPVO reactions than for dehydrogenation reaction.
引用
收藏
页码:7258 / 7266
页数:9
相关论文
共 43 条
[1]   Selective conversion of ethanol to 1,3-butadiene using germanium talc as catalyst [J].
Akiyama, Sohta ;
Miyaji, Akimitsu ;
Hayashi, Yoshihiro ;
Hiza, Misao ;
Sekiguchi, Yasumasa ;
Koyama, To-ru ;
Shiga, Akinobu ;
Baba, Toshihide .
JOURNAL OF CATALYSIS, 2018, 359 :184-197
[2]   Effect of Preparation Method and CuO Promotion in the Conversion of Ethanol into 1,3-Butadiene over SiO2-MgO Catalysts [J].
Angelici, Carlo ;
Velthoen, Marjolein E. Z. ;
Weckhuysen, Bert M. ;
Bruijnincx, Pieter C. A. .
CHEMSUSCHEM, 2014, 7 (09) :2505-2515
[3]   Chemocatalytic Conversion of Ethanol into Butadiene and Other Bulk Chemicals [J].
Angelici, Carlo ;
Weckhuysen, Bert M. ;
Bruijnincx, Pieter C. A. .
CHEMSUSCHEM, 2013, 6 (09) :1595-1614
[4]   Structural identification of ZnxZryOz catalysts for Cascade aldolization and self-deoxygenation reactions [J].
Baylon, Rebecca A. L. ;
Sun, Junming ;
Kovarik, Libor ;
Engelhard, Mark ;
Li, Houqian ;
Winkelman, Austin D. ;
Wang, Yong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 234 :337-346
[5]   TRANSFORMATION OF AN ALCOHOL IN THE PRESENCE OF A KETONE AS A MODEL REACTION TO CHARACTERIZE THE ACIDITY AND THE BASICITY OF OXIDE CATALYSTS [J].
BERKANI, M ;
LEMBERTON, JL ;
MARCZEWSKI, M ;
PEROT, G .
CATALYSIS LETTERS, 1995, 31 (04) :405-410
[6]   KINETIC STUDY ON MECHANISM OF CATALYTIC CONVERSION OF ETHANOL TO BUTADIENE [J].
BHATTACHARYYA, SK ;
SANYAL, SK .
JOURNAL OF CATALYSIS, 1967, 7 (02) :152-+
[7]   Role of Magnesium Silicates in Wet-Kneaded Silica-Magnesia Catalysts for the Lebedev Ethanol-to-Butadiene Process [J].
Chung, Sang-Ho ;
Angelici, Carlo ;
Hinterding, Stijn O. M. ;
Weingarth, Markus ;
Baldus, Marc ;
Houben, Klaartje ;
Weckhuysen, Bert M. ;
Bruijnincx, Pieter C. A. .
ACS CATALYSIS, 2016, 6 (06) :4034-4045
[8]   AI-free Sn-beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction) [J].
Corma, A ;
Domine, ME ;
Nemeth, L ;
Valencia, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (13) :3194-3195
[9]  
Cosimo J.I.D., 2004, J MOL CATAL-A CHEM, V222, P87
[10]   Zeolite Structural Confinement Effects Enhance One-Pot Catalytic Conversion of Ethanol to Butadiene [J].
Dai, Weili ;
Zhang, Shanshan ;
Yu, Zhiyang ;
Yan, Tingting ;
Wu, Guangjun ;
Guan, Naijia ;
Li, Landong .
ACS CATALYSIS, 2017, 7 (05) :3703-3706