Relative Energy for the Korteweg Theory and Related Hamiltonian Flows in Gas Dynamics

被引:50
作者
Giesselmann, Jan [1 ]
Lattanzio, Corrado [2 ]
Tzavaras, Athanasios E. [3 ,4 ]
机构
[1] Univ Stuttgart, Inst Appl Anal & Numer Simulat, Pfaffenwaldring 57, D-70563 Stuttgart, Germany
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67010 Laquila, AQ, Italy
[3] King Abdullah Univ Sci & Technol, Comp Elect Math Sci & Engn Div, Thuwal, Saudi Arabia
[4] Fdn Res & Technol, Inst Appl & Computat Math, Iraklion 70013, Crete, Greece
关键词
EULER-POISSON EQUATIONS; SPACE DIMENSIONS; SYSTEM; RELAXATION; STABILITY; MODEL; CONVERGENCE; ELASTICITY; ENTROPY;
D O I
10.1007/s00205-016-1063-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Euler system with dynamics generated by a potential energy functional. We propose a form for the relative energy that exploits the variational structure and we derive a relative energy identity. When applied to specific energies, this yields relative energy identities for the Euler-Korteweg, the Euler-Poisson, the Quantum Hydrodynamics system, and low order approximations of the Euler-Korteweg system. For the Euler-Korteweg system we prove a stability theorem between a weak and a strong solution and an associated weak-strong uniqueness theorem. In the second part we focus on the Navier-Stokes-Korteweg system (NSK) with non-monotone pressure laws, and prove stability for the NSK system via a modified relative energy approach. We prove the continuous dependence of solutions on initial data and the convergence of solutions of a low order model to solutions of the NSK system. The last two results provide physically meaningful examples of how higher order regularization terms enable the use of the relative energy framework for models with energies which are not poly- or quasi-convex, compensated by higher-order gradients.
引用
收藏
页码:1427 / 1484
页数:58
相关论文
共 39 条
[1]  
[Anonymous], 2010, FUNDAMENTAL PRINCIPL
[2]   The Quantum Hydrodynamics System in Two Space Dimensions [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (02) :499-527
[3]   On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :657-686
[4]   Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski system [J].
Ballew, Joshua ;
Trivisa, Konstantina .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 91 :1-19
[5]   On the well-posedness for the Euler-Korteweg model in several space dimensions [J].
Benzoni-Gavage, S. ;
Danchin, R. ;
Descombes, S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) :1499-1579
[6]  
Benzoni-Gavage S, 2005, INTERFACE FREE BOUND, V7, P371
[7]  
Benzoni-Gavage S., 2010, LECT NOTES, P57
[8]   STABLE DISCRETIZATION OF A DIFFUSE INTERFACE MODEL FOR LIQUID-VAPOR FLOWS WITH SURFACE TENSION [J].
Braack, Malte ;
Prohl, Andreas .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (02) :404-423
[9]   PHASE-TRANSITIONS AND HYSTERESIS IN NONLOCAL AND ORDER-PARAMETER MODELS [J].
BRANDON, D ;
LIN, T ;
ROGERS, RC .
MECCANICA, 1995, 30 (05) :541-565
[10]   Topology-Preserving Diffusion of Divergence-Free Vector Fields and Magnetic Relaxation [J].
Brenier, Yann .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (02) :757-770