On the chromatic number of random graphs

被引:23
作者
Coja-Oghlan, Amin [1 ]
Panagiotou, Konstantinos [2 ]
Steger, Angelika [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] ETH, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
关键词
random graphs; chromatic number;
D O I
10.1016/j.jctb.2007.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the classical Erdos-Renyi model of random graphs G(n,p). We show that for p = p(n) <= n(-3/4-delta), for any fixed delta > 0, the chromatic number chi(G(n,p)) is a.a.s. l, l + 1, or l + 2, where l is the maximum integer satisfying 2(l - 1) log(l - 1) <= p(n - 1). (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:980 / 993
页数:14
相关论文
共 11 条
[1]   The two possible values of the chromatic number of a random graph [J].
Achlioptas, D ;
Naor, A .
ANNALS OF MATHEMATICS, 2005, 162 (03) :1335-1351
[2]  
Achlioptas D, 1999, RANDOM STRUCT ALGOR, V14, P63, DOI 10.1002/(SICI)1098-2418(1999010)14:1<63::AID-RSA3>3.0.CO
[3]  
2-7
[4]   The concentration of the chromatic number of random graphs [J].
Alon, N ;
Krivelevich, M .
COMBINATORICA, 1997, 17 (03) :303-313
[5]  
Alon N., 2004, The probabilistic method
[6]   THE CHROMATIC NUMBER OF RANDOM GRAPHS [J].
BOLLOBAS, B .
COMBINATORICA, 1988, 8 (01) :49-55
[7]  
Janson S., 2000, WILEY INTERSCI SER D
[8]   A NOTE ON THE SHARP CONCENTRATION OF THE CHROMATIC NUMBER OF RANDOM GRAPHS [J].
LUCZAK, T .
COMBINATORICA, 1991, 11 (03) :295-297
[9]   THE CHROMATIC NUMBER OF RANDOM GRAPHS [J].
LUCZAK, T .
COMBINATORICA, 1991, 11 (01) :45-54
[10]  
os P., 1959, Publ. Math, V6, P290, DOI DOI 10.5486/PMD.1959.6.3-4.12