The asymptotic distribution of CUSUM estimator based on α-mixing sequences

被引:4
作者
Gao, Min [1 ]
Ding, Saisai [1 ]
Wu, Shipeng [1 ]
Yang, Wenzhi [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei, Peoples R China
关键词
Brownian bridge; Change point detection; CUSUM estimator; alpha-mixing sequence; CENTRAL LIMIT-THEOREM; CHANGE-POINT; STRUCTURAL-CHANGES; SQUARES; INEQUALITIES; CONVERGENCE;
D O I
10.1080/03610918.2020.1794006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the CUSUM estimator based on alpha-mixing sequences. By giving the consistency estimators for mean and covariance functions, the limit distribution of CUSUM estimator is presented as a standard Brownian bridge, which can be used in the change point detection. As applications, some simulations and real data examples are illustrated to test our CUSUM estimator.
引用
收藏
页码:6101 / 6113
页数:13
相关论文
共 27 条
[1]   The CUSUM Test for Detecting Structural Changes in Strong Mixing Processes [J].
Azizzadeh, F. ;
Rezakhah, S. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (17) :3733-3750
[2]  
Bai J., 1994, J TIME SER ANAL, V15, P453, DOI [10.1111/j.1467-9892.1994.tb00204.x, DOI 10.1111/J.1467-9892.1994.TB00204.X]
[3]   DETECTING LEVEL SHIFTS IN TIME-SERIES [J].
BALKE, NS .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1993, 11 (01) :81-92
[4]  
Billingsley Patrick., 2013, CONVERGE PROBAB MEAS
[5]   PROBLEM OF NILE - CONDITIONAL SOLUTION TO A CHANGEPOINT PROBLEM [J].
COBB, GW .
BIOMETRIKA, 1978, 65 (02) :243-251
[6]   CONVERGENCE OF DISTRIBUTIONS GENERATED BY STATIONARY STOCHASTIC PROCESSES [J].
DAVYDOV, YA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (04) :691-&
[7]   THE ASYMPTOTIC-BEHAVIOR OF SOME NONPARAMETRIC CHANGE-POINT ESTIMATORS [J].
DUMBGEN, L .
ANNALS OF STATISTICS, 1991, 19 (03) :1471-1495
[8]   Variance Targeting Estimation of Multivariate GARCH Models [J].
Francq, Christian ;
Horvath, Lajos ;
Zakoian, Jean-Michel .
JOURNAL OF FINANCIAL ECONOMETRICS, 2016, 14 (02) :353-382
[9]  
Hall P., 1980, MARTINGALE LIMIT THE
[10]   A FUNCTIONAL CENTRAL LIMIT-THEOREM FOR STRONGLY MIXING SEQUENCES OF RANDOM-VARIABLES [J].
HERRNDORF, N .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (04) :541-550