Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat

被引:34
作者
Navakode, S. [1 ]
Weidner, A. [1 ]
Lohwasser, U. [1 ]
Roeder, M. S. [1 ]
Boerner, A. [1 ]
机构
[1] Leibniz Inst Plant Genet & Crop Plant Res IPK, D-06466 Gatersleben, Germany
关键词
Aegilops tauschii; Aluminium tolerance; Introgression; QTL analysis; SSR marker; Triticum aestivum; TRITICUM-AESTIVUM L; MICROSATELLITE MARKERS; RFLP MARKERS; GENE; RESISTANCE; IDENTIFICATION; ACID; MALATE; RICE; TRANSPORTER;
D O I
10.1007/s10681-008-9845-8
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Aluminium (Al) toxicity is a major constraint to crop productivity in acidic soils. A quantitative trait locus (QTL) analysis was performed to identify the genetic basis of Al tolerance in the wheat cultivar 'Chinese Spring'. A nutrient solution culture approach was undertaken with the root tolerance index (RTI) and hematoxylin staining method as parameters to assess the Al tolerance. Using a set of D genome introgression lines, a major Al tolerance QTL was located on chromosome arm 4DL, explaining 31% of the phenotypic variance present in the population. A doubled haploid population was used to map a second major Al tolerance QTL to chromosome arm 3BL. This major QTL (Qalt (CS) .ipk-3B) in 'Chinese Spring' accounted for 49% of the phenotypic variation. Linkage of this latter QTL to SSR markers opens the possibility to apply marker-assisted selection (MAS) and pyramiding of this new QTL to improve the Al tolerance of wheat cultivars in breeding programmes.
引用
收藏
页码:283 / 290
页数:8
相关论文
共 52 条
[1]   GENETICS OF TOLERANCE TO ALUMINUM IN WHEAT (TRITICUM-AESTIVUM L THELL) [J].
ANIOL, A .
PLANT AND SOIL, 1990, 123 (02) :223-227
[2]   THE GENOMIC INHERITANCE OF ALUMINUM TOLERANCE IN ATLAS-66 WHEAT [J].
BERZONSKY, WA .
GENOME, 1992, 35 (04) :689-693
[3]   Analysis of wheat disease resistance data originating from screenings of Gatersleben genebank accessions during 1933 and 1992 [J].
Börner, A ;
Freytag, U ;
Sperling, U .
GENETIC RESOURCES AND CROP EVOLUTION, 2006, 53 (03) :453-465
[4]   ALUMINUM TOLERANCE IN WHEAT (TRITICUM-AESTIVUM L) .2. ALUMINUM-STIMULATED EXCRETION OF MALIC-ACID FROM ROOT APICES [J].
DELHAIZE, E ;
RYAN, PR ;
RANDALL, PJ .
PLANT PHYSIOLOGY, 1993, 103 (03) :695-702
[5]   CHROMOSOMAL REARRANGEMENTS IN THE RYE GENOME RELATIVE TO THAT OF WHEAT [J].
DEVOS, KM ;
ATKINSON, MD ;
CHINOY, CN ;
FRANCIS, HA ;
HARCOURT, RL ;
KOEBNER, RMD ;
LIU, CJ ;
MASOJC, P ;
XIE, DX ;
GALE, MD .
THEORETICAL AND APPLIED GENETICS, 1993, 85 (6-7) :673-680
[6]  
Doyle J.J., 1987, Focus, V19, P11, DOI DOI 10.2307/2419362
[7]   Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.) [J].
Fontecha, G. ;
Silva-Navas, J. ;
Benito, C. ;
Mestres, M. A. ;
Espino, F. J. ;
Hernandez-Riquer, M. V. ;
Gallego, F. J. .
THEORETICAL AND APPLIED GENETICS, 2007, 114 (02) :249-260
[8]   Comparative genetics in the grasses [J].
Gale, MD ;
Devos, KM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (05) :1971-1974
[9]   Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress [J].
Guo, Peiguo ;
Bai, Guihua ;
Carver, Brett ;
Li, Ronghua ;
Bernardo, Amy ;
Baum, Michael .
MOLECULAR GENETICS AND GENOMICS, 2007, 277 (01) :1-12
[10]   The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat [J].
Gupta, PK ;
Varshney, RK .
EUPHYTICA, 2000, 113 (03) :163-185