Finite element analysis of a coupled nonlinear system

被引:0
|
作者
Loula, Abimael F. D. [1 ]
Zhu, Jiang [1 ]
机构
[1] MCT, Lab Nacl Comp Cient, BR-25651070 Petropolis, RJ, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2001年 / 20卷 / 03期
关键词
coupled nonlinear system; existence; uniqueness; regularity; finite element approximations; error estimates;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A coupled nonlinear elliptic system modelling a large class of engineering problems is studied. Existence, uniqueness and regularity of weak solutions are established. Finite element approximations combined with a a fixed point algorithm are proposed and analysed. Numerical results are presented to confirm he estimates and to illustrate the behavior of the solution close to stability limits.
引用
收藏
页码:321 / 339
页数:19
相关论文
共 50 条
  • [31] Optimal Error Estimates of SAV Crank-Nicolson Finite Element Method for the Coupled Nonlinear Schrödinger Equation
    Li, Dongfang
    Li, Xiaoxi
    Sun, Hai-wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (03)
  • [32] On coupled system of nonlinear Ψ-Hilfer hybrid fractional differential equations
    Mali, Ashwini D.
    Kucche, Kishor D.
    da Costa Sousa, Jose Vanterler
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (04) : 1425 - 1445
  • [33] Solvability of a Nonlinear Coupled System of n Fractional Differential Equations
    Belarbi, Soumia
    Dahmani, Zoubir
    MATEMATIKA, 2014, 30 (02) : 123 - 133
  • [34] ANALYSIS OF A FULLY DISCRETE FINITE-ELEMENT METHOD FOR A NONLINEAR MAGNETIC-FIELD PROBLEM
    HEISE, B
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (03) : 745 - 759
  • [35] Optimal L ∞ error estimates for finite element Galerkin methods for nonlinear evolution equations
    Omrani K.
    J. Appl. Math. Comp., 2008, 1-2 (247-262): : 247 - 262
  • [36] Convergence analysis of finite element method for incompressible magnetohydrodynamics system with variable density
    Ding, Qianqian
    Li, Mingxia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 462
  • [37] Mixed finite element methods for the Rosenau equation
    Atouani, Noureddine
    Ouali, Yousra
    Omrani, Khaled
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 57 (1-2) : 393 - 420
  • [38] Mixed finite element methods for the Rosenau equation
    Noureddine Atouani
    Yousra Ouali
    Khaled Omrani
    Journal of Applied Mathematics and Computing, 2018, 57 : 393 - 420
  • [39] A posteriori analysis of a finite element discretization of a Naghdi shell model
    Bernardi, Christine
    Hecht, Frederic
    Le Dret, Herve
    Blouza, Adel
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) : 190 - 211
  • [40] Finite element convergence analysis for the thermoviscoelastic Joule heating problem
    Malqvist, Axel
    Stillfjord, Tony
    BIT NUMERICAL MATHEMATICS, 2017, 57 (03) : 787 - 810