Immiscible Viscous Fingering: The Simulation of Tertiary Polymer Displacements of Viscous Oils in 2D Slab Floods

被引:7
作者
Beteta, Alan [1 ]
Sorbie, Ken S. [1 ,2 ]
Skauge, Arne [1 ,2 ]
机构
[1] Heriot Watt Univ, Inst GeoEnergy Engn, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Energy Res Norway, N-5007 Bergen, Norway
关键词
viscous fingering; immiscible displacement; polymer flooding; enhanced oil recovery; RELATIVE PERMEABILITY; FLUID; FLOW; STABILITY;
D O I
10.3390/polym14194159
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Immiscible viscous fingering in porous media occurs when a high viscosity fluid is displaced by an immiscible low viscosity fluid. This paper extends a recent development in the modelling of immiscible viscous fingering to directly simulate experimental floods where the viscosity of the aqueous displacing fluid was increased (by the addition of aqueous polymer) after a period of low viscosity water injection. This is referred to as tertiary polymer flooding, and the objective of this process is to increase the displacement of oil from the system. Experimental results from the literature showed the very surprising observation that the tertiary injection of a modest polymer viscosity could give astonishingly high incremental oil recoveries (IR) of >= 100% even for viscous oils of 7000 mPa.s. This work seeks to both explain and predict these results using recent modelling developments. For the 4 cases (mu(o)/mu(w) of 474 to 7000) simulated in this paper, finger patterns are in line with those observed using X-ray imaging of the sandstone slab floods. In particular, the formation of an oil bank on tertiary polymer injection is very well reproduced and the incremental oil response and water cut drops induced by the polymer are very well predicted. The simulations strongly support our earlier claim that this increase in incremental oil displacement cannot be explained solely by a viscous "extended Buckley-Leverett" (BL) linear displacement effect; referred to in the literature simply as "mobility control". This large response is the combination of this effect (BL) along with a viscous crossflow (VX) mechanism, with the latter VX effect being the major contributor to the recovery mechanism.
引用
收藏
页数:20
相关论文
共 41 条
[1]  
[Anonymous], 2021, STARS
[2]  
[Anonymous], 2015, Core analysis: a best practice guide, DOI DOI 10.1016/B978-0-444-63533-4.00007-X
[3]   Stability of CO2-brine immiscible displacement [J].
Berg, S. ;
Ott, H. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 11 :188-203
[4]   The Role of Immiscible Fingering on the Mechanism of Secondary and Tertiary Polymer Flooding of Viscous Oil [J].
Beteta, A. ;
Sorbie, K. S. ;
McIver, K. ;
Johnson, G. ;
Gasimov, R. ;
van Zeil, W. .
TRANSPORT IN POROUS MEDIA, 2022, 143 (02) :343-372
[5]  
Blunt M. J., 2016, MULTIPHASE FLOW PERM
[6]  
Christie MA., 1989, SPE Reservoir Eng., V4, P297, DOI DOI 10.2118/16005-PA
[7]   Pore-Scale Evaluation of Polymers Displacing Viscous Oil-Computational-Fluid-Dynamics Simulation of Micromodel Experiments [J].
Clemens, Torsten ;
Tsikouris, Kostas ;
Buchgraber, Markus ;
Castanier, Louis ;
Kovscek, Anthony .
SPE RESERVOIR EVALUATION & ENGINEERING, 2013, 16 (02) :144-154
[8]   Numerical Modeling of Unstable Waterfloods and Tertiary Polymer Floods Into Highly Viscous Oils [J].
de Loubens, R. ;
Vaillant, G. ;
Regaieg, M. ;
Yang, J. ;
Moncorge, A. ;
Fabbri, C. ;
Darche, G. .
SPE JOURNAL, 2018, 23 (05) :1909-1928
[9]   LBM Simulation of Viscous Fingering Phenomenon in Immiscible Displacement of Two Fluids in Porous Media [J].
Dong, B. ;
Yan, Y. Y. ;
Li, W. Z. .
TRANSPORT IN POROUS MEDIA, 2011, 88 (02) :293-314
[10]  
Engelberts WF., 1951, 3 WORLD PETR C HAG N