Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal

被引:211
作者
Gu, Hongbo [1 ,2 ]
Rapole, Sowjanya B. [1 ,3 ]
Sharma, Jaishri [3 ]
Huang, Yudong [2 ]
Cao, Dongmei [4 ]
Colorado, Henry A. [5 ]
Luo, Zhiping [6 ]
Haldolaarachchige, Neel [7 ]
Young, David P. [7 ]
Walters, Bryan [8 ]
Wei, Suying [3 ]
Guo, Zhanhu [1 ]
机构
[1] Lamar Univ, ICL, Dan F Smith Dept Chem Engn, Beaumont, TX 77710 USA
[2] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Heilongjiang, Peoples R China
[3] Lamar Univ, Dept Chem & Biochem, Beaumont, TX 77710 USA
[4] Louisiana State Univ, Ctr Mat Characterizat, Baton Rouge, LA 70803 USA
[5] Univ Calif Los Angeles, Los Angeles, CA 90066 USA
[6] Fayetteville State Univ, Dept Chem & Phys, Fayetteville, NC 28301 USA
[7] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[8] Earth Analyt Sci Inc, Beaumont, TX 77705 USA
来源
RSC ADVANCES | 2012年 / 2卷 / 29期
基金
美国国家科学基金会;
关键词
ZERO-VALENT IRON; AQUEOUS-SOLUTION; WASTE-WATER; EMERALDINE BASE; CR(VI) REMOVAL; REDUCTION; NANOPARTICLES; POLYMER; XPS; POLYPYRROLE;
D O I
10.1039/c2ra21991c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The removal of toxic hexavalent chromium (Cr(VI)) from polluted water by magnetic polyaniline(PANI) polymer nanocomposites (PNCs) was investigated. The PNCs were synthesized using a facile surface initiated polymerization (SIP) method and demonstrated unique capability to remove Cr(VI) from polluted solutions with a wide pH range. Complete Cr(VI) removal from a 20.0 mL neutral solution with an initial Cr(VI) concentration of 1.0-3.0 mg L-1 was observed after a 5 min treatment period with a PNC load of 10 mg. The PNC dose of 0.6 g L-1 was found to be sufficient for complete Cr(VI) removal from 20.0 mL of 9.0 mg L-1 Cr(VI) solution. The saturation magnetization was observed to have no obvious decrease after treatment with Cr(VI) solution, and these PNCs could be easily recovered using a permanent magnet and recycled. The Cr(VI) removal kinetics were determined to follow pseudo-first-order behavior with calculated room temperature pseudo-first-order rate constants of 0.185, 0.095 and 0.156 min(-1) for the solutions with pH values of 1.0, 7.0 and 11.0, respectively. The Cr(VI) removal mechanism was investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and energy-filter transmission electron microscopy (EFTEM). The results showed that PANI was partially oxidized after treatment with Cr(VI) solution, with Cr(VI) being reduced to Cr(III). The EFTEM observation indicated that the adsorbed Cr(III) had penetrated into the interior of the PNCs instead of simply adsorbing on the PNC surface. This synthesized material was found to be easily regenerated by 1.0 mol L-1 p-toluene sulfonic acid (PTSA) or 1.0 mol L-1 hydrochloric acid (HCl) and efficiently reused for further Cr(VI) removal.
引用
收藏
页码:11007 / 11018
页数:12
相关论文
共 95 条
  • [1] Remediation of Chromium(VI) by a Methane-Oxidizing Bacterium
    Al Hasin, Abubakr
    Gurman, Stephen J.
    Murphy, Loretta M.
    Perry, Ashlee
    Smith, Thomas J.
    Gardiner, Philip H. E.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (01) : 400 - 405
  • [2] Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal
    Alowitz, MJ
    Scherer, MM
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (03) : 299 - 306
  • [3] Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon
    Amuda, O. S.
    Giwa, A. A.
    Bello, I. A.
    [J]. BIOCHEMICAL ENGINEERING JOURNAL, 2007, 36 (02) : 174 - 181
  • [4] ON THE PREPARATION OF THE COLORED WATER-BASED MAGNETIC FLUIDS (RED, YELLOW, BLUE AND BLACK)
    ATARASHI, T
    IMAI, T
    SHIMOIIZAKA, J
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1990, 85 (1-3) : 3 - 6
  • [5] Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan
    Babel, S
    Kurniawan, TA
    [J]. CHEMOSPHERE, 2004, 54 (07) : 951 - 967
  • [6] XPS evidence of redox chemistry between cold rolled steel and polyaniline
    Beard, BC
    Spellane, P
    [J]. CHEMISTRY OF MATERIALS, 1997, 9 (09) : 1949 - 1953
  • [7] Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite
    Bhaumik, Madhumita
    Maity, Arjun
    Srinivasu, V. V.
    Onyango, Maurice S.
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2011, 190 (1-3) : 381 - 390
  • [8] SPECTROSCOPIC STUDIES OF ACCEPTOR AND DONOR DOPING OF POLYANILINE IN THE EMERALDINE BASE AND PERNIGRANILINE FORMS
    CAO, Y
    [J]. SYNTHETIC METALS, 1990, 35 (03) : 319 - 332
  • [9] Intrinsic redox states of polyaniline studied by high-resolution X-ray photoelectron spectroscopy
    Chen, Y
    Kang, ET
    Neoh, KG
    Lim, SL
    Ma, ZH
    Tan, KL
    [J]. COLLOID AND POLYMER SCIENCE, 2001, 279 (01) : 73 - 76
  • [10] Polyaniline nanofibers prepared by dilute polymerization
    Chiou, NR
    Epstein, AJ
    [J]. ADVANCED MATERIALS, 2005, 17 (13) : 1679 - +