Tensile Properties of Built and Rebuilt/Repaired Specimens of 316L Stainless Steel Using Directed Energy Deposition

被引:8
|
作者
Simoneau, Louis [1 ,2 ,3 ]
Bois-Brochu, Alexandre [2 ]
Blais, Carl [1 ]
机构
[1] Univ Laval, Min Met & Mat Engn, Quebec City, PQ G1V 0A6, Canada
[2] Ctr Met Quebec, R&D, Trois Rivieres, PQ G9A 5E1, Canada
[3] Rio Tinto Aluminium, Jonquiere, PQ G7S 3B6, Canada
关键词
additive manufacturing; directed energy deposition; repair; stainless steel; tensile properties; LASER; COMPONENTS; REPAIR;
D O I
10.1007/s11665-020-05087-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the most exciting possibilities brought forward by some additive manufacturing (AM) processes is their ability to deposit materials on existing parts. Mainly achievable with directed energy deposition systems, it is thus possible to repair worn or broken components. Two applications were studied in this research: (1) complete construction and (2) repair of tensile specimens made of 316L-Si stainless steel. The latter series was produced by adding material on existing half specimens made of wrought 316L stainless steel. All specimens were built along the Z-axis. Tensile specimens machined from wrought were also tested for comparison purposes. Three conditions were tested for each series of AM specimens: as-built, stress relieved and HIPed. The results show that yield strength, ultimate tensile strength (UTS) and elongation are higher than the typical tensile properties reported for annealed 316L. Repairs show excellent bond resistance with the wrought material and good mechanical properties with a mean UTS of 647 MPa in the as-built condition.
引用
收藏
页码:6139 / 6146
页数:8
相关论文
共 50 条
  • [31] Investigations on the Mechanical Characteristics of the Stainless Steel 316L Alloy Fabricated by Directed Energy Deposition for Repairing Application
    V. Vinoth
    T. Sekar
    M. Kumaran
    Journal of Materials Engineering and Performance, 2023, 32 : 4138 - 4150
  • [32] Tensile fracture behavior of 316L stainless steel components fabricated with hybrid directed energy deposition and thermal milling manufacturing
    Pengfei Li
    Jianzhong Zhou
    Liangliang Li
    Teng Zhang
    Yanqiang Gou
    Xiankai Meng
    Jianzhong Lyu
    Applied Physics A, 2021, 127
  • [33] Significant dislocation strengthening of stainless steel 316L via co-directed energy deposition of silica
    Kim, Hong-Seok
    Park, Sang-Hu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 891
  • [34] Investigations on the Mechanical Characteristics of the Stainless Steel 316L Alloy Fabricated by Directed Energy Deposition for Repairing Application
    Vinoth, V.
    Sekar, T.
    Kumaran, M.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (09) : 4138 - 4150
  • [35] Effect of laser remelting on the surface characteristics of 316L stainless steel fabricated via directed energy deposition
    Cho, Seung Yeong
    Shin, Gwang Yong
    Shim, Do Sik
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 15 : 5814 - 5832
  • [36] Effect of build height on the properties of large format stainless steel 316L fabricated via directed energy deposition
    Feenstra, D. R.
    Cruz, V.
    Gao, X.
    Molotnikov, A.
    Birbilis, N.
    ADDITIVE MANUFACTURING, 2020, 34
  • [37] An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by Directed Energy Deposition
    Saboori, Abdollah
    Piscopo, Gabriele
    Lai, Manuel
    Salmi, Alessandro
    Biamino, Sara
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 780
  • [38] Ti-containing 316L stainless steels with excellent tensile properties fabricated by directed energy deposition additive manufacturing
    Han, Soo Bin
    Lee, Yoon Sun
    Park, Sung Hyuk
    Song, Hyejin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 862
  • [39] Comparative Forming Size and Mechanical Properties of 316L Stainless Steel Fabricated Using Laser/Plasma Arc Directed Energy Deposition
    Qin Wentao
    Yang Yongqiang
    Weng Changwei
    Han Changjun
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2021, 48 (22):
  • [40] Laser-Based Directed Energy Deposition Remanufacturing of Gray Cast Iron using Stainless Steel 316L and Inconel 625 Filler Materials
    Hamilton, Jakob D.
    Trauernicht, David
    Cormier, Denis
    Rivero, Iris V.
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (24)