Tensile Properties of Built and Rebuilt/Repaired Specimens of 316L Stainless Steel Using Directed Energy Deposition

被引:8
|
作者
Simoneau, Louis [1 ,2 ,3 ]
Bois-Brochu, Alexandre [2 ]
Blais, Carl [1 ]
机构
[1] Univ Laval, Min Met & Mat Engn, Quebec City, PQ G1V 0A6, Canada
[2] Ctr Met Quebec, R&D, Trois Rivieres, PQ G9A 5E1, Canada
[3] Rio Tinto Aluminium, Jonquiere, PQ G7S 3B6, Canada
关键词
additive manufacturing; directed energy deposition; repair; stainless steel; tensile properties; LASER; COMPONENTS; REPAIR;
D O I
10.1007/s11665-020-05087-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the most exciting possibilities brought forward by some additive manufacturing (AM) processes is their ability to deposit materials on existing parts. Mainly achievable with directed energy deposition systems, it is thus possible to repair worn or broken components. Two applications were studied in this research: (1) complete construction and (2) repair of tensile specimens made of 316L-Si stainless steel. The latter series was produced by adding material on existing half specimens made of wrought 316L stainless steel. All specimens were built along the Z-axis. Tensile specimens machined from wrought were also tested for comparison purposes. Three conditions were tested for each series of AM specimens: as-built, stress relieved and HIPed. The results show that yield strength, ultimate tensile strength (UTS) and elongation are higher than the typical tensile properties reported for annealed 316L. Repairs show excellent bond resistance with the wrought material and good mechanical properties with a mean UTS of 647 MPa in the as-built condition.
引用
收藏
页码:6139 / 6146
页数:8
相关论文
共 50 条
  • [1] Tensile Properties of Built and Rebuilt/Repaired Specimens of 316L Stainless Steel Using Directed Energy Deposition
    Louis Simoneau
    Alexandre Bois-Brochu
    Carl Blais
    Journal of Materials Engineering and Performance, 2020, 29 : 6139 - 6146
  • [2] Self-heating behavior during cyclic loadings of 316L stainless steel specimens manufactured or repaired by Directed Energy Deposition
    Balit, Yanis
    Joly, Louis-Romain
    Szmytka, Fabien
    Durbecq, Sylvain
    Charkaluk, Eric
    Constantinescu, Andrei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 786
  • [3] Laser Directed Energy Deposition of Bulk 316L Stainless Steel
    Ascari A.
    Lutey A.H.A.
    Liverani E.
    Fortunato A.
    Ascari, Alessandro (a.ascari@unibo.it), 1600, Springer (07): : 426 - 448
  • [4] Investigation of Heat Treatment Effects on Hybrid Manufacturing of Stainless Steel 316L Components Using Directed Energy Deposition: Microstructural and Tensile Behavior Analysis
    Vinoth, V.
    Kumaran, M.
    Ravi, S.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [5] Effect of Heat Treatment on the Mechanical and Microstructural Properties of Hybrid Stainless-Steel 316L Structures Repaired Using the Directed Energy Deposition Process
    Vinoth, V.
    Kumaran, M.
    Ravi, S.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [6] Directed Energy Deposition of AISI 316L Stainless Steel Powder: Effect of Process Parameters
    Aversa, Alberta
    Marchese, Giulio
    Bassini, Emilio
    METALS, 2021, 11 (06)
  • [7] Influence of heat treatment on stainless steel 316L alloy fabricated using directed energy deposition
    Kumaran, M.
    Sathies, T.
    Balaji, N. S.
    Bharathiraja, G.
    Mohan, S.
    Senthilkumar, V
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 5307 - 5310
  • [8] Influence of trapezoidal groove geometry on the microstructure and mechanical properties of stainless steel 316L parts repaired by laser metal deposition
    Cailloux, Thomas
    Pacquentin, Wilfried
    Narasimalu, Srikanth
    Belnou, Florent
    Schuster, Frederic
    Maskrot, Hicham
    Wang, Chengcheng
    Zhou, Kun
    Balbaud-Celerier, Fanny
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 859
  • [9] Micro structural banding of directed energy deposition-additively manufactured 316L stainless steel
    Hwa, Yoon
    Kumai, Christopher S.
    Devine, Thomas M.
    Yang, Nancy
    Yee, Joshua K.
    Hardwick, Ryan
    Burgmann, Kai
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 69 : 96 - 105
  • [10] Study on Recyclability of 316L Stainless Steel Powder by Using Laser Directed Energy Deposition
    Li, Shihua
    Chen, Bo
    Tan, Caiwang
    Song, Xiaoguo
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (01) : 400 - 409