Decomposing instantons in two dimensions

被引:30
作者
Nitta, Muneto [1 ,2 ]
Vinci, Walter [3 ]
机构
[1] Keio Univ, Dept Phys, Yokohama, Kanagawa 2238521, Japan
[2] Keio Univ, Res & Educ Ctr Nat Sci, Yokohama, Kanagawa 2238521, Japan
[3] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
关键词
NON-ABELIAN VORTICES; BOGOMOLNYI SOLITONS; VORTEX; SUPERSYMMETRY; DUALITY; PHASE; SUPERCONDUCTORS; CONDENSATION; CONFINEMENT; STABILITY;
D O I
10.1088/1751-8113/45/17/175401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Bogomol'nyi-Prasad-Sommerfeld (BPS) vortices in the (1+1)-dimensional N = (2, 2) supersymmetric U(1) gauged CP1 nonlinear sigma model. We use the moduli matrix approach to analytically construct the moduli space of solutions and solve numerically the BPS equations. We identify two topologically inequivalent types of magnetic vortices, which we call S and N vortices. Moreover, we discuss their relation to instantons (lumps) present in the ungauged case. In particular, we describe how a lump is split into a couple of component S-N vortices after gauging. We extend this analysis to the case of the extended Abelian Higgs model with two flavors, which is known to admit semi-local vortices. After gauging the relative phase between fields, semi-local vortices are also split into component vortices. We discuss interesting applications of this simple set-up. Firstly, the gauging of nonlinear sigma models reveals a semiclassical 'partonic' nature of instantons in 1+1 dimensions. Secondly, weak gauging provides for a new interesting regularization of the metric of semi-local vortices.
引用
收藏
页数:23
相关论文
共 77 条
  • [11] THE GAUGE INVARIANT SUPERSYMMETRIC NON-LINEAR SIGMA-MODEL
    BAGGER, J
    WITTEN, E
    [J]. PHYSICS LETTERS B, 1982, 118 (1-3) : 103 - 106
  • [12] Semisuperfluid strings in high density QCD
    Balachandran, AP
    Digal, S
    Matsuura, T
    [J]. PHYSICAL REVIEW D, 2006, 73 (07):
  • [13] Baptista JM, 2005, ADV THEOR MATH PHYS, V9, P1007
  • [14] On the L2-metric of vortex moduli spaces
    Baptista, J. M.
    [J]. NUCLEAR PHYSICS B, 2011, 844 (02) : 308 - 333
  • [15] Vortex equations in abelian gauged σ-models
    Baptista, JM
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 261 (01) : 161 - 194
  • [16] QUANTUM FLUCTUATIONS OF MULTI-INSTANTON SOLUTIONS
    BELAVIN, AA
    FATEEV, VA
    SCHWARZ, AS
    TYUPKIN, YS
    [J]. PHYSICS LETTERS B, 1979, 83 (3-4) : 317 - 320
  • [17] PSEUDOPARTICLE SOLUTIONS OF YANG-MILLS EQUATIONS
    BELAVIN, AA
    POLYAKOV, AM
    SCHWARTZ, AS
    TYUPKIN, YS
    [J]. PHYSICS LETTERS B, 1975, 59 (01) : 85 - 87
  • [18] BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
  • [19] Bolokhov P A, 2011, ARXIV11045241
  • [20] THEORY OF HADRONIC STRUCTURE
    CALLAN, CG
    DASHEN, RF
    GROSS, DJ
    [J]. PHYSICAL REVIEW D, 1979, 19 (06): : 1826 - 1855