Existence, uniqueness and uniform decay for the non-linear degenerate equation with memory condition at the boundary

被引:5
作者
Park, Jong Yeoul [1 ]
Kang, Jum Ran [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
关键词
degenerate equation; uniform decay; boundary memory conditions; priori estimate;
D O I
10.1016/j.amc.2008.01.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence, uniqueness and uniform decay for the solution to the non-linear degenerate equation with memory condition at the boundary. (c) 2008 Published by Elsevier Inc.
引用
收藏
页码:481 / 488
页数:8
相关论文
共 10 条
[1]  
CAVALCANTI M. M., 2001, Differential and Integral Equations, V14, P85
[2]  
CAVALCANTI MM, 1990, NONLINEAR ANAL, V28, P281
[3]  
Lions J.L., 1969, QUELQUES METHODS RES
[4]   DECAY OF SOLUTIONS OF SOME NONLINEAR EVOLUTION EQUATIONS [J].
NAKAO, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 60 (02) :542-549
[5]   Uniform decay of solution for wave equation of Kirchhoff type with nonlinear boundary damping and memory term [J].
Park, JY ;
Bae, JJ ;
Jung, IH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (07) :871-884
[6]  
Perla Menzala G., 1979, Nonlinear Anal. Theory Methods Appl, V3, P613, DOI [10.1016/0362-546X(79)90090-7, DOI 10.1016/0362-546X(79)90090-7]
[7]  
Santos M. L., 2002, EUROPEAN J DIFFERENT, V38, P1
[8]   A boundary condition with memory for Kirchhoff plates equations [J].
Santos, MD ;
Junior, F .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (02) :475-496
[9]   Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary [J].
Santos, ML ;
Ferreira, J ;
Pereira, DC ;
Raposo, CA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (05) :959-976
[10]  
SILVANO DB, 2004, APPL MATH COMPUT, V154, P555