An h-adaptive finite element solver for the calculations of the electronic structures

被引:73
作者
Bao, Gang [1 ,2 ]
Hu, Guanghui [1 ]
Liu, Di [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Density functional theory; h-Adaptive; Kohn-Sham equation; Finite element method; DENSITY-FUNCTIONAL THEORY; GRADIENT RECOVERY;
D O I
10.1016/j.jcp.2012.04.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a framework of using h-adaptive finite element method for the Kohn-Sham equation on the tetrahedron mesh is presented. The Kohn-Sham equation is discretized by the finite element method, and the h-adaptive technique is adopted to optimize the accuracy and the efficiency of the algorithm. The locally optimal block preconditioned conjugate gradient method is employed for solving the generalized eigenvalue problem, and an algebraic multigrid preconditioner is used to accelerate the solver. A variety of numerical experiments demonstrate the effectiveness of our algorithm for both the all-electron and the pseudo-potential calculations. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4967 / 4979
页数:13
相关论文
共 50 条
[41]   An h-adaptive numerical manifold method for solid mechanics problems [J].
Yu ChangYi ;
Liu Feng ;
Xu Ying .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2018, 61 (06) :923-933
[42]   The impact of an efficient linear solver on finite element analyses [J].
Damhaug, AC ;
Reid, J ;
Bergseth, A .
COMPUTERS & STRUCTURES, 1999, 72 (4-5) :595-604
[43]   Solver for Finite element Analysis of ring rolling process [J].
Zhang, Xuebin ;
Wan, Qiong ;
Li, Zhigang .
PRODUCT DESIGN AND MANUFACTURING, 2011, 338 :251-+
[44]   Measurement of join patch properties and their integration into finite-element calculations of assembled structures [J].
Schmidt, A. ;
Bograd, S. ;
Gaul, L. .
SHOCK AND VIBRATION, 2012, 19 (05) :1125-1133
[45]   Analysis of laminated adaptive plate structures using layerwise finite element models [J].
Garçao, JES ;
Soares, CMM ;
Soares, CAM ;
Reddy, JN .
COMPUTERS & STRUCTURES, 2004, 82 (23-26) :1939-1959
[46]   A multilevel correction adaptive finite element method for Kohn-Sham equation [J].
Hu, Guanghui ;
Xie, Hehu ;
Xu, Fei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 355 :436-449
[47]   AN EFFECTIVE FINITE ELEMENT ITERATIVE SOLVER FOR A POISSON-NERNST-PLANCK ION CHANNEL MODEL WITH PERIODIC BOUNDARY CONDITIONS [J].
Xie, Dexuan ;
Lu, Benzhuo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06) :B1490-B1516
[48]   Crystal structures and electronic structures of alkali aluminohexahydrides from density functional calculations [J].
Lovvik, OM ;
Swang, O .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 404 :757-761
[49]   Efficient finite element hyperelasticity solver for blood vessel simulations [J].
Wang, Xinhong ;
Yan, Zhengzheng ;
Jiang, Yi ;
Chen, Rongliang .
JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2020, 14
[50]   An AMR Capable Finite Element Diffusion Solver for ALE Hydrocodes [J].
Fisher, A. C. ;
Bailey, D. S. ;
Kaiser, T. B. ;
Eder, D. C. ;
Gunney, B. T. N. ;
Masters, N. D. ;
Koniges, A. E. ;
Anderson, R. W. .
PLASMA SCIENCE & TECHNOLOGY, 2015, 17 (02) :109-116