An h-adaptive finite element solver for the calculations of the electronic structures

被引:73
作者
Bao, Gang [1 ,2 ]
Hu, Guanghui [1 ]
Liu, Di [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Density functional theory; h-Adaptive; Kohn-Sham equation; Finite element method; DENSITY-FUNCTIONAL THEORY; GRADIENT RECOVERY;
D O I
10.1016/j.jcp.2012.04.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a framework of using h-adaptive finite element method for the Kohn-Sham equation on the tetrahedron mesh is presented. The Kohn-Sham equation is discretized by the finite element method, and the h-adaptive technique is adopted to optimize the accuracy and the efficiency of the algorithm. The locally optimal block preconditioned conjugate gradient method is employed for solving the generalized eigenvalue problem, and an algebraic multigrid preconditioner is used to accelerate the solver. A variety of numerical experiments demonstrate the effectiveness of our algorithm for both the all-electron and the pseudo-potential calculations. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4967 / 4979
页数:13
相关论文
共 50 条
[21]   Adaptive finite differencing in high accuracy electronic structure calculations [J].
Briggs, E. L. ;
Lu, Wenchang ;
Bernholc, J. .
NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
[22]   JCMmode:: An adaptive finite element solver for the computation of leaky modes [J].
Zschiedrich, L ;
Burger, S ;
Klose, R ;
Schädle, A ;
Schmidt, F .
Integrated Optics: Devices, Materials, and Technologies IX, 2005, 5728 :192-202
[23]   A parallel direct solver for the self-adaptive hp Finite Element Method [J].
Paszynski, Maciej ;
Pardo, David ;
Torres-Verdin, Carlos ;
Demkowicz, Leszek ;
Calo, Victor .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2010, 70 (03) :270-281
[24]   An h-adaptive meshfree-enriched finite element method based on convex approximations for the three-dimensional ductile crack propagation simulation [J].
Ren, Bo ;
Wu, C. T. ;
Lyu, Dandan .
COMPUTER AIDED GEOMETRIC DESIGN, 2020, 76
[25]   Goal-oriented error estimation and h-adaptive finite elements for hyperelastic micromorphic continua [J].
Ju, Xiaozhe ;
Mahnken, Rolf ;
Xu, Yangjian ;
Liang, Lihua .
COMPUTATIONAL MECHANICS, 2022, 69 (03) :847-863
[26]   Goal-oriented error estimation and h-adaptive finite elements for hyperelastic micromorphic continua [J].
Xiaozhe Ju ;
Rolf Mahnken ;
Yangjian Xu ;
Lihua Liang .
Computational Mechanics, 2022, 69 :847-863
[27]   An adaptive semi-implicit finite element solver for brain cancer progression modeling [J].
Tzirakis, Konstantinos ;
Papanikas, Christos Panagiotis ;
Sakkalis, Vangelis ;
Tzamali, Eleftheria ;
Papaharilaou, Yannis ;
Caiazzo, Alfonso ;
Stylianopoulos, Triantafyllos ;
Vavourakis, Vasileios .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2023, 39 (07)
[28]   B-Splines and NURBS Based Finite Element Methods for Strained Electronic Structure Calculations [J].
Masud, Arif ;
Al-Naseem, Ahmad A. ;
Kannan, Raguraman ;
Gajendran, Harishanker .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2018, 85 (09)
[29]   Hybrid direct and iterative solver with library of multi-criteria optimal orderings for h adaptive finite element method computations [J].
AbouEisha, Hassan ;
Jopek, Konrad ;
Medygral, Bartlomiej ;
Moshkov, Mikhail ;
Nosek, Szymon ;
Paszynska, Anna ;
Paszynski, Maciej ;
Pingali, Keshav .
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 :865-874
[30]   Finite element simulation of adaptive aerospace structures with SMA actuators [J].
Frautschi, JH ;
Seelecke, S .
SMART STRUCTURES AND MATERIALS 2003: MODELING, SIGNAL PROCESSING, AND CONTROL, 2003, 5049 :65-75