An h-adaptive finite element solver for the calculations of the electronic structures

被引:73
作者
Bao, Gang [1 ,2 ]
Hu, Guanghui [1 ]
Liu, Di [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Density functional theory; h-Adaptive; Kohn-Sham equation; Finite element method; DENSITY-FUNCTIONAL THEORY; GRADIENT RECOVERY;
D O I
10.1016/j.jcp.2012.04.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a framework of using h-adaptive finite element method for the Kohn-Sham equation on the tetrahedron mesh is presented. The Kohn-Sham equation is discretized by the finite element method, and the h-adaptive technique is adopted to optimize the accuracy and the efficiency of the algorithm. The locally optimal block preconditioned conjugate gradient method is employed for solving the generalized eigenvalue problem, and an algebraic multigrid preconditioner is used to accelerate the solver. A variety of numerical experiments demonstrate the effectiveness of our algorithm for both the all-electron and the pseudo-potential calculations. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4967 / 4979
页数:13
相关论文
共 38 条
[1]   DGAUSS - A DENSITY FUNCTIONAL METHOD FOR MOLECULAR AND ELECTRONIC-STRUCTURE CALCULATIONS IN THE 1990S [J].
ANDZELM, J ;
WIMMER, E .
PHYSICA B-CONDENSED MATTER, 1991, 172 (1-2) :307-317
[2]  
[Anonymous], [No title captured]
[3]  
[Anonymous], 2011, NIST COMPUTATIONAL C
[4]  
Bao G., NUMERICAL SOLU UNPUB
[5]   octopus: a tool for the application of time-dependent density functional theory [J].
Castro, Alberto ;
Appel, Heiko ;
Oliveira, Micael ;
Rozzi, Carlo A. ;
Andrade, Xavier ;
Lorenzen, Florian ;
Marques, M. A. L. ;
Gross, E. K. U. ;
Rubio, Angel .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (11) :2465-2488
[6]   Finite element approximations of nonlinear eigenvalue problems in quantum physics [J].
Chen, Huajie ;
He, Lianhua ;
Zhou, Aihui .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (21-22) :1846-1865
[7]  
Emsley J., 1991, ELEMENTS
[8]   Finite element approach for density functional theory calculations on locally-refined meshes [J].
Fattebert, J.-L. ;
Hornung, R. D. ;
Wissink, A. M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (02) :759-773
[9]  
Fattebert J-L., 2003, HDB NUMERICAL ANAL, V10, P571
[10]   Finite difference schemes and block Rayleigh quotient iteration for electronic structure calculations on composite grids [J].
Fattebert, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (01) :75-94