Standard Godel Modal Logics

被引:49
作者
Caicedo, Xavier [1 ]
Rodriguez, Ricardo O. [2 ]
机构
[1] Univ Los Andes, Dept Matemat, Bogota 4976, Colombia
[2] Univ Buenos Aires, Dept Comp, RA-1428 Buenos Aires, DF, Argentina
关键词
many-valued modal logics; Godel-Dummett logic; fuzzy Kripke semantics; strong completeness; FUZZY LOGIC;
D O I
10.1007/s11225-010-9230-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove strong completeness of the square-version and the lozenge-version of a Godel modal logic based on Kripke models where propositions at each world and the accessibility relation are both infinitely valued in the standard Godel algebra [0,1]. Some asymmetries are revealed: validity in the first logic is reducible to the class of frames having two-valued accessibility relation and this logic does not enjoy the finite model property, while validity in the second logic requires truly fuzzy accessibility relations and this logic has the finite model property. Analogues of the classical modal systems D, T, S4 and S5 are considered also, and the completeness results are extended to languages enriched with a discrete well ordered set of truth constants.
引用
收藏
页码:189 / 214
页数:26
相关论文
共 22 条
  • [1] [Anonymous], 2003, DESCRIPTION LOGIC HD
  • [2] [Anonymous], 1998, TR LOG STUD LOG LIB
  • [3] Compact propositional Godel logics
    Baaz, M
    Zach, R
    [J]. 1998 28TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC - PROCEEDINGS, 1998, : 108 - 113
  • [4] First-order Godel logics
    Baaz, Matthias
    Preining, Norbert
    Zach, Richard
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2007, 147 (1-2) : 23 - 47
  • [5] BOU F, 2008, MATHWARE SOFT COMPUT, V15, P175
  • [6] Chagrov A., 1997, Modal Logic
  • [7] Dosen K., 1984, STUD LOGICA, V43, P217, DOI DOI 10.1007/BF02429840
  • [8] Esteva F, 2006, J MULT-VALUED LOG S, V12, P9
  • [9] FischerServi G., 1984, REND SEM MAT U POLIT, V42, P179
  • [10] Fitting M., 1992, Fundamenta Informaticae, V17, P55