A reactive transport model for geochemical mitigation of CO2 leaking into a confined aquifer

被引:6
|
作者
Druhan, Jennifer L. [1 ]
Vialle, Stephanie [1 ]
Maher, Kate [1 ]
Benson, Sally [2 ]
机构
[1] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA
来源
12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12 | 2014年 / 63卷
关键词
CO2; storage; caprock defect; sealant; reactive transport; WATER-ROCK INTERACTIONS; DEEP SALINE; FRIO-FORMATION; STORAGE; SEQUESTRATION; LEAKAGE; TEXAS; INTRUSION; IMPACTS; CEMENT;
D O I
10.1016/j.egypro.2014.11.495
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Long-term storage of anthropogenic CO2 in the subsurface generally assumes that caprock formations will serve as physical barriers to upward migration of CO2. However, as a precaution and to provide assurances to regulators and the public, monitoring is used detect any unexpected leakage from the storage reservoir. If a leak is found, the ability to rapidly deploy mitigation measures is needed. Here we use the TOUGHREACT code to develop a series of two-dimensional reactive transport simulations of the hydrogeochemical characteristics of a newly formed CO2 leak into an overlying aquifer. Using this model, we consider: (1) geochemical shifts in formation water indicative of a leak; (2) hydrodynamics of pumping wells in the vicinity of a leak; and (3) delivery of a sealant to a leak through an adjacent well bore. Our results demonstrate that characteristic shifts in pH and dissolved inorganic carbon can be detected in the aquifer prior to the breakthrough of supercritical CO2, and could offer a potential means of identifying small and newly formed leaks. Pumping water into the aquifer in the vicinity of the leak provides a hydrodynamic control that can temporarily mitigate the flux rate of CO2 and facilitate delivery of a sealant to the location of the caprock defect. Injection of a fluid-phase sealant through the pumping well is demonstrated by introduction of a silica-bearing alkaline flood, resulting in precipitation of amorphous silica in areas of neutral to acidic pH. Results show that a decrease in permeability of several orders of magnitude can be achieved with a high molar volume sealant, such that CO2 flux rate is decreased. However, individual simulation results are highly contingent upon both the properties of the sealant, the porosity-permeability relationship employed in the model, and the relative flux rates of CO2 and alkaline flood introduced into the aquifer. These conclusions highlight the need for both experimental data and controlled field tests to constrain modelling predictions. (C) 2014 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:4620 / 4629
页数:10
相关论文
共 50 条
  • [21] Recent Advances in Geochemical and Mineralogical Studies on CO2-Brine-Rock Interaction for CO2 Sequestration: Laboratory and Simulation Studies
    Khan, Muhammad Noman
    Siddiqui, Shameem
    Thakur, Ganesh C.
    ENERGIES, 2024, 17 (13)
  • [22] 2-D reactive transport modeling of the fate of CO2 injected into a saline aquifer in the Wabamun Lake Area, Alberta, Canada
    Dalkhaa, Chantsalmaa
    Shevalier, Maurice
    Nightingale, Michael
    Mayer, Bernhard
    APPLIED GEOCHEMISTRY, 2013, 38 : 10 - 23
  • [23] Geochemical evaluation of CO2 injection and containment in a depleted gas field
    Tambach, Tim J.
    Koenen, Marielle
    Wasch, Laura J.
    van Bergen, Frank
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 32 : 61 - 80
  • [24] Reactive transport in porous media for CO2 sequestration: Pore scale modeling using the lattice Boltzmann method
    Gao, Jinfang
    Xing, Huilin
    Tian, Zhiwei
    Pearce, Julie K.
    Sedek, Mohamed
    Golding, Suzanne D.
    Rudolph, Victor
    COMPUTERS & GEOSCIENCES, 2017, 98 : 9 - 20
  • [25] 2D reactive transport modeling of the interaction between a marl and a CO2-rich sulfate solution under supercritical CO2 conditions
    Davila, Gabriela
    Luquot, Linda
    Soler, Josep M.
    Cama, Jordi
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2016, 54 : 145 - 159
  • [26] Reactive transport modelling insights into CO2 migration through sub-vertical fluid flow structures
    Marin-Moreno, H.
    Bull, Jonathan M.
    Matter, Juerg M.
    Sanderson, David J.
    Roche, Ben J.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2019, 86 : 82 - 92
  • [27] A study on the impact of SO2 on CO2 injectivity for CO2 storage in a Canadian saline aquifer
    Wang, Zhiyu
    Wang, Jinsheng
    Lan, Christopher
    He, Ian
    Ko, Vivien
    Ryan, David
    Wigston, Andrew
    APPLIED ENERGY, 2016, 184 : 329 - 336
  • [28] A monitoring system for CO2-EOR and storage based on reactive transport simulation of CO2 migration in groundwater
    Li, L.
    Wu, Y.
    Lin, Q.
    Wen, Q.
    Chong, S.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (08) : 8359 - 8372
  • [29] Enhancement of CO2 dissolution and sweep efficiency in saline aquifer by micro bubble CO2 injection
    Jiang, Lanlan
    Xue, Ziqiu
    Park, Hyuck
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 138 : 1211 - 1221
  • [30] Development of reactive-transport models simulating the formation of a silica gel barrier under CO2 storage conditions
    Llanos, Ella M.
    Castaneda-Herrera, Cesar A.
    Black, Jay R.
    Haese, Ralf R.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2022, 119