Beyond the Cahn-Hilliard equation: a vacancy-based kinetic theory

被引:3
|
作者
Nastar, Maylise [1 ]
机构
[1] CEA Saclay, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France
来源
SOLID-SOLID PHASE TRANSFORMATIONS IN INORGANIC MATERIALS, PTS 1-2 | 2011年 / 172-174卷
关键词
vacancy; diffusion; spinodal decomposition; mean field; local equilibrium; SPINODAL DECOMPOSITION; PHASE-SEPARATION; PHENOMENOLOGICAL COEFFICIENTS; MULTICOMPONENT ALLOY; DIFFUSION; MODEL; EQUILIBRIUM; IRRADIATION; SYSTEMS;
D O I
10.4028/www.scientific.net/SSP.172-174.321
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Self-Consistent Mean Field (SCMF) kinetic theory including an explicit description of the vacancy diffusion mechanism is developed. The present theory goes beyond the usual local equilibrium hypothesis. It is applied to the study of the early time spinodal decomposition in alloys. The resulting analytical expression of the structure function highlights the contribution of the vacancy diffusion mechanism. Instead of the single amplification rate of the Cahn-Hillard linear theory, the linearized SCMF kinetic equations involve three constant rates, first one describing the vacancy relaxation kinetics, second one related to the kinetic coupling between local concentrations and pair correlations and the third one representing the spinodal amplification rate. Starting from the same vacancy diffusion model, we perform kinetic Monte Carlo simulations of a Body Centered Cubic (BCC) demixting alloy. The resulting spherically averaged structure function is compared to the SCMF predictions. Both qualitative and quantitative agreements are satisfying.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 50 条
  • [41] Analysis and Optimal Velocity Control of a Stochastic Convective Cahn-Hilliard Equation
    Scarpa, Luca
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (02)
  • [42] EXISTENCE OF SOLUTION FOR A GENERALIZED STOCHASTIC CAHN-HILLIARD EQUATION ON CONVEX DOMAINS
    Antonopoulou, Dimitra
    Karali, Georgia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (01): : 31 - 55
  • [43] DISCONTINUOUS GALERKIN FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD EQUATION WITH CONVECTION
    Kay, David
    Styles, Vanessa
    Sueli, Endre
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 2660 - 2685
  • [44] Using the Cahn-Hilliard Theory in Metastable Binary Solutions
    Viet-Nhien Tran Duc
    Chan, Philip K.
    CHEMENGINEERING, 2019, 3 (03) : 1 - 15
  • [45] CRITICAL CASE FOR THE VISCOUS CAHN-HILLIARD EQUATION
    Le Trong Thanh Bui
    Anh Nguyen Dao
    Diaz, Jesus Ildefonso
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [46] Convergence of substructuring methods for the Cahn-Hilliard equation
    Garai, Gobinda
    Mandal, Bankim C.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 120
  • [47] A nonstiff, adaptive mesh refinement-based method for the Cahn-Hilliard equation
    Ceniceros, Hector D.
    Roma, Alexandre M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) : 1849 - 1862
  • [48] A parallel multigrid method of the Cahn-Hilliard equation
    Shin, Jaemin
    Kim, Sungki
    Lee, Dongsun
    Kim, Junseok
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 71 : 89 - 96
  • [49] ANALYSIS AND APPROXIMATION OF A FRACTIONAL CAHN-HILLIARD EQUATION
    Ainsworth, Mark
    Mao, Zhiping
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) : 1689 - 1718
  • [50] High Order Finite Element Calculations for the Cahn-Hilliard Equation
    Goudenege, Ludovic
    Martin, Daniel
    Vial, Gregory
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (02) : 294 - 321