Beyond the Cahn-Hilliard equation: a vacancy-based kinetic theory

被引:3
|
作者
Nastar, Maylise [1 ]
机构
[1] CEA Saclay, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France
来源
SOLID-SOLID PHASE TRANSFORMATIONS IN INORGANIC MATERIALS, PTS 1-2 | 2011年 / 172-174卷
关键词
vacancy; diffusion; spinodal decomposition; mean field; local equilibrium; SPINODAL DECOMPOSITION; PHASE-SEPARATION; PHENOMENOLOGICAL COEFFICIENTS; MULTICOMPONENT ALLOY; DIFFUSION; MODEL; EQUILIBRIUM; IRRADIATION; SYSTEMS;
D O I
10.4028/www.scientific.net/SSP.172-174.321
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Self-Consistent Mean Field (SCMF) kinetic theory including an explicit description of the vacancy diffusion mechanism is developed. The present theory goes beyond the usual local equilibrium hypothesis. It is applied to the study of the early time spinodal decomposition in alloys. The resulting analytical expression of the structure function highlights the contribution of the vacancy diffusion mechanism. Instead of the single amplification rate of the Cahn-Hillard linear theory, the linearized SCMF kinetic equations involve three constant rates, first one describing the vacancy relaxation kinetics, second one related to the kinetic coupling between local concentrations and pair correlations and the third one representing the spinodal amplification rate. Starting from the same vacancy diffusion model, we perform kinetic Monte Carlo simulations of a Body Centered Cubic (BCC) demixting alloy. The resulting spherically averaged structure function is compared to the SCMF predictions. Both qualitative and quantitative agreements are satisfying.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 50 条
  • [1] Phase Separation in the Advective Cahn-Hilliard Equation
    Feng, Yu
    Feng, Yuanyuan
    Iyer, Gautam
    Thiffeault, Jean-Luc
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (06) : 2821 - 2845
  • [2] A Cahn-Hilliard equation with singular diffusion
    Schimperna, Giulio
    Pawlow, Irena
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) : 779 - 803
  • [3] CAHN-HILLIARD EQUATION WITH CAPILLARITY IN ACTUAL DEFORMING CONFIGURATIONS
    Roubicek, Tomas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (01): : 41 - 55
  • [4] The sharp interface limit for the stochastic Cahn-Hilliard equation
    Antonopoulou, D. C.
    Bloemker, D.
    Karali, G. D.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (01): : 280 - 298
  • [5] Atomic diffusion theory challenging the Cahn-Hilliard method
    Nastar, M.
    PHYSICAL REVIEW B, 2014, 90 (14)
  • [6] Unexpectedly linear behavior for the Cahn-Hilliard equation
    Sander, E
    Wanner, T
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (06) : 2182 - 2202
  • [7] Fast algorithm for viscous Cahn-Hilliard equation
    Wang, Danxia
    Li, Yaqian
    Wang, Xingxing
    Jia, Hongen
    FRONTIERS OF MATHEMATICS IN CHINA, 2022, 17 (04) : 689 - 713
  • [8] A generalized Cahn-Hilliard equation incorporating geometrically linear elasticity
    Blesgen, Thomas
    Chenchiah, Isaac V.
    INTERFACES AND FREE BOUNDARIES, 2011, 13 (01) : 1 - 27
  • [9] ON THE CAHN-HILLIARD EQUATION WITH IRREGULAR POTENTIALS AND DYNAMIC BOUNDARY CONDITIONS
    Gilardi, Gianni
    Miranville, Alain
    Schimperna, Giulio
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (03) : 881 - 912
  • [10] The Cahn-Hilliard Equation with Logarithmic Potentials
    Cherfils, Laurence
    Miranville, Alain
    Zelik, Sergey
    MILAN JOURNAL OF MATHEMATICS, 2011, 79 (02) : 561 - 596