Stability and Hopf Bifurcation Analysis on a Bazykin Model with Delay

被引:2
|
作者
Zhang, Jianming [1 ]
Zhang, Lijun [1 ,2 ]
Khalique, Chaudry Masood [2 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] North West Univ, Dept Math Sci, Int Inst Symmetry Anal & Math Modelling, ZA-2735 Mmabatho, South Africa
关键词
PREDATOR-PREY SYSTEM; FUNCTIONAL-RESPONSE;
D O I
10.1155/2014/539684
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamics of a prey-predator system with a finite delay is investigated. We show that a sequence of Hopf bifurcations occurs at the positive equilibrium as the delay increases. By using the theory of normal form and center manifold, explicit expressions for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Stability and Hopf bifurcation analysis in a delay Swarms model
    Liu Feng
    Yin Xiang
    Ling Guang
    Guan Zhi-Hong
    Hua O, Wang
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 1049 - 1053
  • [2] Analysis of stability and Hopf bifurcation for a viral infectious model with delay
    Sun, Chengjun
    Cao, Zhijie
    Lin, Yiping
    CHAOS SOLITONS & FRACTALS, 2007, 33 (01) : 234 - 245
  • [3] STABILITY AND HOPF BIFURCATION ANALYSIS OF DELAY PREY-PREDATOR MODEL
    Gumus, Ozlem A. K.
    Yalcin, Yonca
    JOURNAL OF SCIENCE AND ARTS, 2020, (02): : 277 - 282
  • [4] Analysis of stability and Hopf bifurcation for an HIV infection model with time delay
    Zhou, Xueyong
    Song, Xinyu
    Shi, Xiangyun
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (01) : 23 - 38
  • [5] Stability and Hopf bifurcation analysis of an eco-epidemiological model with delay
    Zhou, Xueyong
    Cui, Jingan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (09): : 1654 - 1680
  • [6] STABILITY AND HOPF BIFURCATION ANALYSIS ON A SPRUCE-BUDWORM MODEL WITH DELAY
    Zhang, Lijun
    Zhang, Jianming
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (06): : 2711 - 2721
  • [7] Stability and Hopf bifurcation for an epidemic disease model with delay
    Sun, CJ
    Lin, YP
    Han, MA
    CHAOS SOLITONS & FRACTALS, 2006, 30 (01) : 204 - 216
  • [8] Stability and Hopf Bifurcation Analysis for a Phage Therapy Model with and without Time Delay
    Kyaw, Ei Ei
    Zheng, Hongchan
    Wang, Jingjing
    AXIOMS, 2023, 12 (08)
  • [9] STABILITY AND HOPF BIFURCATION ANALYSIS OF AN EPIDEMIOLOGICAL MODEL INCORPORATING DELAY AND MEDIA COVERAGE
    Wang, X. J.
    Xu, C. Q.
    Pan, Y. X.
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2015,
  • [10] Analysis of stability and Hopf bifurcation for an eco-epidemiological model with distributed delay
    Zhou, Xue-yong
    Guo, Zhen
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2012, (44) : 1 - 22