Stability and Hopf Bifurcation Analysis on a Bazykin Model with Delay

被引:2
作者
Zhang, Jianming [1 ]
Zhang, Lijun [1 ,2 ]
Khalique, Chaudry Masood [2 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] North West Univ, Dept Math Sci, Int Inst Symmetry Anal & Math Modelling, ZA-2735 Mmabatho, South Africa
关键词
PREDATOR-PREY SYSTEM; FUNCTIONAL-RESPONSE;
D O I
10.1155/2014/539684
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamics of a prey-predator system with a finite delay is investigated. We show that a sequence of Hopf bifurcations occurs at the positive equilibrium as the delay increases. By using the theory of normal form and center manifold, explicit expressions for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.
引用
收藏
页数:7
相关论文
共 19 条
[1]  
Bazykin A, 1998, Nonlinear dynamics of interacting populations, V11
[2]   Convergence results in a well-known delayed predator-prey system [J].
Beretta, E ;
Kuang, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (03) :840-853
[3]   Global analyses in some delayed ratio-dependent predator-prey systems [J].
Beretta, E ;
Kuang, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (03) :381-408
[4]  
Cushing J. M., 2013, Integrodifferential Equations and Delay Models in Population Dynamics, DOI DOI 10.1007/978-3-642-93073-7
[6]  
GOPALSAMY K, 1984, J AUST MATH SOC B, V25, P473, DOI 10.1017/S0334270000004227
[7]  
GOPALSAMY K, 1983, B MATH BIOL, V45, P295, DOI 10.1016/S0092-8240(83)80058-5
[8]  
Gopalsamy K., 2013, STABILITY OSCILLATIO, V74
[9]  
Hassard B.D., 1981, Theory and Applications of Hopf Bifurcation
[10]  
Kuang Y., 1993, Delay Differential Equations with Applications in Population Dynamics