INTERACTIONS AND OSCILLATIONS OF THREE-SOLITON SOLUTION IN THE VARIABLE-COEFFICIENT KUNDU-ECKHAUS EQUATION FOR DISPERSION MANAGEMENT SYSTEMS

被引:0
作者
Yu, Wei-Tian [1 ,2 ]
Wazwaz, Abdul-Majid [3 ]
Zhou, Qin [4 ]
Liu, Wen-Jun [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
[3] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
[4] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
来源
ROMANIAN JOURNAL OF PHYSICS | 2019年 / 64卷 / 3-4期
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Soliton interactions; soliton oscillations; dispersion management; variable coefficient Kundu-Eckhaus equation; Hirota method; ROSSBY SOLITARY WAVES; OPTICAL SOLITONS; ROGUE-WAVE; CONSERVATION-LAWS; WELL; FISSION; DARK;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In dispersion management systems, the communication quality can be affected by soliton interactions and oscillations. In this paper, the variable coefficient Kundu-Eckhaus equation, which describes the propagation of femtosecond optical solitons in optical fibers, is investigated to control interactions and oscillations of solitons. The analytic three-soliton solutions for this equation are obtained by using the Hirota direct method. The different characteristics of soliton interactions and oscillations are presented when the group-velocity dispersion (GVD) and nonlinearity vary with the normalized propagation distance x. If the GVD coefficient r(x) and the nonlinearity m(x) are taken as the same arc-hyperbolic sine function, the interaction between parabolic-type solitons can be weakened by adequately choosing the corresponding free parameters of the model. When r(x) and m(x) are chosen as the same trigonometric sine function, the problem of how to control the interaction between parallel solitons with varying oscillation period or intensity is investigated. Moreover, the soliton phase shift can be adjusted to control soliton interactions. The obtained analytical and numerical results may help the design of optical communications systems through studying the complex soliton interactions.
引用
收藏
页数:16
相关论文
共 62 条
[31]   Abundant soliton solutions for the Kundu-Eckhaus equation via tan(φ(ξ))-expansion method [J].
Manafian, Jalil ;
Lakestani, Mehrdad .
OPTIK, 2016, 127 (14) :5543-5551
[32]  
Melnik MV, 2018, ROM J PHYS, V63
[33]   Stability of walking vector solitons [J].
Mihalache, D ;
Mazilu, D ;
Torner, L .
PHYSICAL REVIEW LETTERS, 1998, 81 (20) :4353-4356
[34]  
Mihalache D, 2012, ROM J PHYS, V57, P352
[35]   Stable discrete surface light bullets [J].
Mihalache, Dumitru ;
Mazilu, Dumitru ;
Lederer, Falk ;
Kivshar, Yuri S. .
OPTICS EXPRESS, 2007, 15 (02) :589-595
[36]  
Mihalache D, 2017, ROM REP PHYS, V69
[37]  
Mihalache D, 2015, P ROMANIAN ACAD A, V16, P62
[38]  
Mihalache D, 2014, ROM J PHYS, V59, P295
[39]   Optical solitons and conservation law of Kundu-Eckhaus equation [J].
Mirzazadeh, Mohammad ;
Yildirim, Yakup ;
Yasar, Emrullah ;
Triki, Houria ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Ullah, Malik Zaka ;
Seadawy, Aly R. ;
Biswas, Anjan ;
Belic, Milivoj .
OPTIK, 2018, 154 :551-557
[40]   The Darboux transformation of the Kundu-Eckhaus equation [J].
Qiu, Deqin ;
He, Jingsong ;
Zhang, Yongshuai ;
Porsezian, K. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2180)