Mixed-mode oscillations in a nonlinear time delay oscillator with time varying parameters

被引:11
作者
Yu, Yue [1 ]
Han, Xiujing [2 ]
Zhang, Chun [3 ]
Bi, Qinsheng [2 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226007, Peoples R China
[2] Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang 212013, Peoples R China
[3] Huaiyin Normal Univ, Sch Math Sci, Huaiyin 223300, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 47卷
基金
中国国家自然科学基金;
关键词
Mix-mode oscillations (MMOs); Bifurcation mechanism; Time delay; Parametric excitation; HOPF-BIFURCATION; EXCITED SYSTEM; STABILITY; FEEDBACK; CHAOS; VAN; EQUATION; CIRCUIT; NETWORK;
D O I
10.1016/j.cnsns.2016.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, the mechanism for the action of time-invariant delay on a non-autonomous system with slow parametric excitation is investigated. The complex mix-mode oscillations (MMOs) are presented when the parametric excitation item slowly passes through critical bifurcation values of this nonlinear time delay oscillator. We use bifurcation theory to clarify certain generation mechanism related to three complex spiking formations, i.e., "symmetric sup-pitchfork bifurcation", "symmetric sup-pitchforkisup-Hopf bifurcation", and "symmetric sup-pitchfork/sup-Hopf/homoclinic orbit bifurcation". Such bifurcation behaviors result in various hysteresis loops between the spiking attractor and the quasi-stationary process, which are responsible for the generation of MMOs. We further identify that the occurrence and evolution of such complex MMOs depend on the magnitude of the delay. Specifically, with the increase of time delay, the two limit cycles bifurcated from Hopf bifurcations may merge into an enlarged cycle, which is caused by a saddle homoclinic orbit bifurcation. We can conclude that time delay plays a vital role in the generation of MMOs. Our findings enrich the routes to spiking process and deepen the understanding of MMOs in time delay systems. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 34
页数:12
相关论文
共 29 条
  • [11] Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron
    Krupa, Martin
    Popovic, Nikola
    Kopell, Nancy
    Rotstein, Horacio G.
    [J]. CHAOS, 2008, 18 (01)
  • [12] Steady state bifurcation of a periodically excited system under delayed feedback controls
    Leung, A. Y. T.
    Guo, Zhongjin
    Myers, Alan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (12) : 5256 - 5272
  • [13] DISSECTION OF A MODEL FOR NEURONAL PARABOLIC BURSTING
    RINZEL, J
    LEE, YS
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1987, 25 (06) : 653 - 675
  • [14] Nonlinear electronic circuit with neuron like bursting and spiking dynamics
    Savino, Guillermo V.
    Formigli, Carlos M.
    [J]. BIOSYSTEMS, 2009, 97 (01) : 9 - 14
  • [15] CHAOS IN THE CLASSICAL RELATIVISTIC-MECHANICS OF A DAMPED DUFFING-LIKE DRIVEN SYSTEM
    SCHIEVE, WC
    HORWITZ, LP
    [J]. PHYSICS LETTERS A, 1991, 156 (3-4) : 140 - 146
  • [16] EMERGENCE OF ORGANIZED BURSTING IN CLUSTERS OF PANCREATIC BETA-CELLS BY CHANNEL SHARING
    SHERMAN, A
    RINZEL, J
    KEIZER, J
    [J]. BIOPHYSICAL JOURNAL, 1988, 54 (03) : 411 - 425
  • [17] Complex mixed-mode oscillations in a Bonhoeffer-van der Pot oscillator under weak periodic perturbation
    Shimizu, Kuniyasu
    Saito, Yuto
    Sekikawa, Munehisa
    Inaba, Naohiko
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (18) : 1518 - 1526
  • [18] Burst synchronization transitions in a neuronal network of subnetworks
    Sun, Xiaojuan
    Lei, Jinzhi
    Perc, Matjaz
    Kurths, Juergen
    Chen, Guanrong
    [J]. CHAOS, 2011, 21 (01)
  • [19] Bursting oscillations, bifurcation and synchronization in neuronal systems
    Wang, Haixia
    Wang, Qingyun
    Lu, Qishao
    [J]. CHAOS SOLITONS & FRACTALS, 2011, 44 (08) : 667 - 675
  • [20] A modified averaging scheme with application to the secondary Hopf bifurcation of a delayed van der Pol oscillator
    Wang, Z. H.
    Hu, H. Y.
    [J]. ACTA MECHANICA SINICA, 2008, 24 (04) : 449 - 454