Immobilized trimeric metal clusters: A family of the smallest catalysts for selective CO2 reduction toward multi-carbon products

被引:82
作者
Pei, Wei [1 ]
Zhou, Si [1 ,2 ]
Zhao, Jijun [1 ]
Xu, Xun [2 ]
Du, Yi [2 ]
Dou, Shi Xue [2 ]
机构
[1] Dalian Univ Technol, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian 116024, Peoples R China
[2] Univ Wollongong, Inst Superconducting & Elect Mat ISEM, Australian Inst Innovat Mat AIIM, Wollongong, NSW 2500, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Transition metal; Trimeric cluster; CO2; reduction; Multi-carbon products; Selectivity; SINGLE-ATOM CATALYSTS; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; REACTION-MECHANISMS; ENERGY CALCULATIONS; CU(100) SURFACE; GRAPHENE; ELECTROREDUCTION; ELECTROCATALYSTS; HYDROCARBONS;
D O I
10.1016/j.nanoen.2020.105049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using clean electricity to convert carbon dioxide (CO2), an earth abundant carbon feedstock, to high-energy fuels is a fascinating energy strategy for a sustainable future. However, high yield of multi-carbon products remains a grand challenge. Herein, we show that trimeric metal clusters anchored on nitrogen doped porous carbon materials possess remarkable activity and selectivity for C-2-C-3 hydrocarbons and alcohols. By comprehensive ab initio calculations on 3d, 4d and 5d transition metal trimers, we for the first time illuminate their specialty for catalyzing this tough reaction. These spatially confined triatomic metal centers are capable of simultaneous fixation of plural CO2 molecules, provide exclusive reaction channels that sterically and electronically facilitate C-C coupling, and have tunable selectivity by mediating the cluster-substrate interaction. The catalytic mechanism and structure-activity relationship are uncovered for these sub-nano clusters with robust stability. These results provide important knowledge for atomically precise design of novel catalysts for direct conversion of CO2 to high-energy fuels and high-value chemicals.
引用
收藏
页数:9
相关论文
共 69 条
[1]   Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements [J].
Back, Seoin ;
Lim, Juhyung ;
Kim, Na-Young ;
Kim, Yong-Hyun ;
Jung, Yousung .
CHEMICAL SCIENCE, 2017, 8 (02) :1090-1096
[2]   Hybrid Cu0 and Cux+ as Atomic Interfaces Promote High-Selectivity Conversion of CO2 to C2H5OH at Low Potential [J].
Bai, Xiaowan ;
Li, Qiang ;
Shi, Li ;
Niu, Xianghong ;
Ling, Chongyi ;
Wang, Jinlan .
SMALL, 2020, 16 (12)
[3]   Acid and basic catalysis [J].
Bronsted, JN .
CHEMICAL REVIEWS, 1928, 5 (03) :231-338
[4]  
Chase M., 1998, Technical Report, V4th, P1
[5]   Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications [J].
Chen, Yuanjun ;
Ji, Shufang ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
JOULE, 2018, 2 (07) :1242-1264
[6]   Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (42) :13802-13805
[7]   Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0 [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (23) :4767-4773
[8]   Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity [J].
Clark, Ezra L. ;
Hahn, Christopher ;
Jaramillo, Thomas F. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (44) :15848-15857
[9]   Catalytic Reduction of N2 to NH3 by an Fe-N2 Complex Featuring a C-Atom Anchor [J].
Creutz, Sidney E. ;
Peters, Jonas C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (03) :1105-1115
[10]   C2N-graphene supported single-atom catalysts for CO2 electrochemical reduction reaction: mechanistic insight and catalyst screening [J].
Cui, Xudong ;
An, Wei ;
Liu, Xiaoyang ;
Wang, Hao ;
Men, Yong ;
Wang, Jinguo .
NANOSCALE, 2018, 10 (32) :15262-15272