Design, fabrication, and testing of a low frequency MEMS piezoelectromagnetic energy harvester

被引:16
作者
Fernandes, Egon [1 ]
Martin, Blake [1 ]
Rua, Isabel [2 ]
Zarabi, Sid [3 ]
Debeda, Helene [2 ]
Nairn, David [3 ]
Wei, Lan [3 ]
Salehian, Armaghan [1 ]
机构
[1] Univ Waterloo, Energy Harvesting & Vibrat Lab, Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ Bordeaux, Lab IMS, Bordeaux INP, UMR 5218, 351 Cours Liberat,BAT A31, F-33405 Talence, France
[3] Univ Waterloo, Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
关键词
smart materials; energy harvesting; piezoelectrics; smart grid;
D O I
10.1088/1361-665X/aaaba5
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper details a power solution for smart grid applications to replace batteries by harvesting the electromagnetic energy from a current-carrying wire. A MEMS piezoelectromagnetic energy harvester has been fabricated using PZT screen-printing technology with a centrally-supported meandering geometry. The energy harvesting device employs a symmetric geometry to increase its power output by reducing the effects of the torsional modes and the resultant overall strain nodes in the system subsequently reduce the complexities for the electrode fabrication. The unit is modelled using COMSOL to determine mode shapes and frequency response functions. A 12.7 mm by 14.7 mm unit is fabricated by screen-printing 75 mu m-thick PZT on a stainless steel substrate and then experimentally tested to validate the FEA results. Experimentally, the harvester is shown to produce 9 mu W from a wire carrying 7 A while operating at a distance of 6.5 mm from the wire. The design of the current work results in a greater normalized power density than other MEMS based piezoelectromagnetic devices and shows great potential relative to larger devices that use bulk or thin film piezoelectrics.
引用
收藏
页数:15
相关论文
共 32 条
[1]   Low-frequency Zigzag energy harvesters operating in torsion-dominant mode [J].
Abdelmoula, H. ;
Sharpes, N. ;
Abdelkefi, A. ;
Lee, H. ;
Priya, S. .
APPLIED ENERGY, 2017, 204 :413-419
[2]   Low-Frequency Meandering Piezoelectric Vibration Energy Harvester [J].
Berdy, David F. ;
Srisungsitthisunti, Pornsak ;
Jung, Byunghoo ;
Xu, Xianfan ;
Rhoads, Jeffrey F. ;
Peroulis, Dimitrios .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2012, 59 (05) :846-858
[3]  
Castille C, 2010, THESIS
[4]   Piezoelectric and electromagnetic hybrid energy harvester for powering wireless sensor nodes in smart grid [J].
Chen, Wang ;
Cao, Yanlong ;
Xie, Jin .
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2015, 29 (10) :4313-4318
[5]   Gas discrimination using screen-printed piezoelectric cantilevers coated with carbon nanotubes [J].
Clement, P. ;
Del Castillo Perez, E. ;
Gonzalez, O. ;
Calavia, R. ;
Lucat, C. ;
Llobet, E. ;
Debeda, H. .
SENSORS AND ACTUATORS B-CHEMICAL, 2016, 237 :1056-1065
[6]  
Costache F., 2017, MULTIDISCIPLINARY DI, V1, P588
[7]   One-step firing for electroded PZT thick films applied to MEMS [J].
Debeda, H. ;
Clement, P. ;
Llobet, E. ;
Lucat, C. .
SMART MATERIALS AND STRUCTURES, 2015, 24 (02)
[8]  
Debeda H, 2017, POWERMEMS 2017 17 IN
[9]   Modelling and fabrication of a compliant centrally supported meandering piezoelectric energy harvester using screen-printing technology [J].
Fernandes, E. ;
Zarabi, S. ;
Debeda, H. ;
Lucat, C. ;
Nairn, D. ;
Wei, L. ;
Salehian, A. .
16TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2016), 2016, 773
[10]   Energy harvesting from electric power lines employing the Halbach arrays [J].
He, Wei ;
Li, Ping ;
Wen, Yumei ;
Zhang, Jitao ;
Lu, Caijiang ;
Yang, Aichao .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (10)