A combined relaxation method for a class of nonlinear variational inequalities

被引:16
|
作者
Konnov, IV [1 ]
机构
[1] Kazan VI Lenin State Univ, Dept Appl Math, Kazan 420008, Russia
关键词
variational inequalities; decomposition scheme; non-monotone mapping; combined relaxation method;
D O I
10.1080/02331930211990
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we describe a class of combined relaxation methods for the non strictly monotone nonlinear variational inequality problem, which involves a max-type convex function. This method is readily implementable and attains a linear rate of convergence under certain additional assumptions.
引用
收藏
页码:127 / 143
页数:17
相关论文
共 50 条
  • [31] New Parallel Descent-like Method for Solving a Class of Variational Inequalities
    Jiang, Z. K.
    Yuan, X. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 145 (02) : 311 - 323
  • [32] A reduction method for variational inequalities
    Stephen M. Robinson
    Mathematical Programming, 1998, 80 : 161 - 169
  • [33] A reduction method for variational inequalities
    Robinson, SM
    MATHEMATICAL PROGRAMMING, 1998, 80 (02) : 161 - 169
  • [34] EXTRAGRADIENT METHOD FOR VARIATIONAL INEQUALITIES
    Bnouhachem, Abdellah
    Noor, Muhammad Aslam
    Al-Said, Eisa
    Khalfaoui, Mohamed
    Sheng Zhaohan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (06): : 839 - 854
  • [35] A NEW RELAXATION METHOD FOR OPTIMAL CONTROL OF SEMILINEAR ELLIPTIC VARIATIONAL INEQUALITIES OBSTACLE PROBLEMS
    Osmani, El Hassene
    Haddou, Mounir
    Bensalem, Naceurdine
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2023, 13 (01): : 169 - 193
  • [36] A class of Benders decomposition methods for variational inequalities
    Juan Pablo Luna
    Claudia Sagastizábal
    Mikhail Solodov
    Computational Optimization and Applications, 2020, 76 : 935 - 959
  • [37] On a singular perturbation problem for a class of variational inequalities
    Alvarez-Dios, J. A.
    Chipot, M.
    Garcia, J. C.
    Muniz, M. C.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2008, 27 (01): : 79 - 94
  • [38] Finite volume approximation of a class of variational inequalities
    Herbin, R
    Marchand, E
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (02) : 553 - 585
  • [39] A class of Benders decomposition methods for variational inequalities
    Luna, Juan Pablo
    Sagastizabal, Claudia
    Solodov, Mikhail
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 76 (03) : 935 - 959
  • [40] A class of projection methods for general variational inequalities
    Noor, MA
    Rassias, TM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) : 334 - 343