A combined relaxation method for a class of nonlinear variational inequalities

被引:16
|
作者
Konnov, IV [1 ]
机构
[1] Kazan VI Lenin State Univ, Dept Appl Math, Kazan 420008, Russia
关键词
variational inequalities; decomposition scheme; non-monotone mapping; combined relaxation method;
D O I
10.1080/02331930211990
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we describe a class of combined relaxation methods for the non strictly monotone nonlinear variational inequality problem, which involves a max-type convex function. This method is readily implementable and attains a linear rate of convergence under certain additional assumptions.
引用
收藏
页码:127 / 143
页数:17
相关论文
共 50 条
  • [21] ON VARIATIONAL INEQUALITIES AND NONLINEAR PROGRAMMING
    Ivanov, Vsevolod I.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2008, 45 (04) : 483 - 491
  • [22] A SELF-ADAPTIVE PROJECTION METHOD FOR A CLASS OF VARIANT VARIATIONAL INEQUALITIES
    Bnouhachem, Abdellah
    Noor, Muhammad Aslam
    Khalfaoui, Mohamed
    Sheng Zhaohan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (01): : 117 - 129
  • [23] Solving a class of asymmetric variational inequalities by a new alternating direction method
    Wang, SL
    Yang, H
    He, BS
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (8-9) : 927 - 937
  • [24] Mixed formulations for a class of variational inequalities
    Slimane, L
    Bendali, A
    Laborde, P
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (01): : 177 - 201
  • [25] Algorithms for nonlinear mixed variational inequalities
    Muhammad Aslam Noor
    Eisa A. Al-Said
    Korean Journal of Computational & Applied Mathematics, 1998, 5 (2): : 271 - 286
  • [26] On a Generalization of Nonlinear Pseudoparabolic Variational Inequalities
    Petrosyan, A. A.
    Hakobyan, G. S.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2008, 43 (02): : 118 - 125
  • [27] Systems of Variational Inequalities with Nonlinear Operators
    Ceng, Lu-Chuan
    Yuan, Qing
    MATHEMATICS, 2019, 7 (04)
  • [28] On a generalization of nonlinear pseudoparabolic variational inequalities
    A. A. Petrosyan
    G. S. Hakobyan
    Journal of Contemporary Mathematical Analysis, 2008, 43 : 118 - 125
  • [29] New Parallel Descent-like Method for Solving a Class of Variational Inequalities
    Z. K. Jiang
    X. M. Yuan
    Journal of Optimization Theory and Applications, 2010, 145 : 311 - 323
  • [30] An inexact LQP alternating direction method for solving a class of structured variational inequalities
    Bnouhachem, Abdellah
    Xu, M. H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (03) : 671 - 680