Docking Challenge: Protein Sampling and Molecular Docking Performance

被引:182
作者
Elokely, Khaled M. [1 ]
Doerksen, Robert J. [1 ,2 ]
机构
[1] Univ Mississippi, Dept Med Chem, Sch Pharm, University, MS 38677 USA
[2] Univ Mississippi, Sch Pharm, Pharmaceut Sci Res Inst, University, MS 38677 USA
基金
美国国家科学基金会;
关键词
EMPIRICAL SCORING FUNCTIONS; LIGAND DOCKING; DATA-BANK; GENETIC ALGORITHM; INHIBITORS; ACCURACY; COMPLEXES; PROGRAMS; CONFORMATIONS; FLEXIBILITY;
D O I
10.1021/ci400040d
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Computational tools are essential in the drug design process, especially in order to take advantage of the increasing numbers of solved X-ray and NMR protein-ligand structures. Nowadays, molecular docking methods are routinely used for prediction of protein ligand interactions and to aid in selecting potent molecules as a part of virtual screening of large databases. The improvements and advances in computational capacity in the past decade have allowed for further developments in molecular docking algorithms to address more complicated aspects such as protein flexibility. The effects of incorporation of active site water molecules and implicit or explicit solvation of the binding site are other relevant issues to be addressed in the docking procedures. Using the right docking algorithm at the right stage of virtual screening is most important. We report a staged study to address the effects of various aspects of protein flexibility and inclusion of active site water molecules on docking effectiveness to retrieve (and to be able to predict) correct ligand poses and to rank docked ligands in relation to their biological activity for CHK1, ERK2, LpxC, and UPA. We generated multiple conformers for the ligand and compared different docking algorithms that use a variety of approaches to protein flexibility, including rigid receptor, soft receptor, flexible side chains, induced fit, and multiple structure algorithms. Docking accuracy varied from 1% to 84%, demonstrating that the choice of method is important.
引用
收藏
页码:1934 / 1945
页数:12
相关论文
共 71 条
[1]  
[Anonymous], 2012, SCHROD SUIT 2012
[2]  
[Anonymous], OEDOCKING V3 0 0 FRE
[3]  
[Anonymous], 2012, SCHROD SUIT LIGPREP
[4]  
[Anonymous], 2012, SCHROD SUIT 2012 GLI
[5]  
[Anonymous], OMEGA V2 4 6
[6]  
[Anonymous], The PyMOL Molecular Graphics System
[7]  
[Anonymous], POSIT VERS 1 0 2
[8]  
[Anonymous], OEDOCKING V3 0 0 HYB
[9]   Structure-Guided Design of Potent and Selective Pyrimidylpyrrole Inhibitors of Extracellular Signal-Regulated Kinase (ERK) Using Conformational Control [J].
Aronov, Alex M. ;
Tang, Qing ;
Martinez-Botella, Gabriel ;
Bemis, Guy W. ;
Cao, Jingrong ;
Chen, Guanjing ;
Ewing, Nigel P. ;
Ford, Pamella J. ;
Germann, Ursula A. ;
Green, Jeremy ;
Hale, Michael R. ;
Jacobs, Marc ;
Janetka, James W. ;
Maltais, Francois ;
Markland, William ;
Namchuk, Mark N. ;
Nanthakumar, Suganthini ;
Poondru, Srinivasu ;
Straub, Judy ;
ter Haar, Ernst ;
Xie, Xiaoling .
JOURNAL OF MEDICINAL CHEMISTRY, 2009, 52 (20) :6362-6368
[10]  
Balaji GA, 2013, CURR SCI INDIA, V104, P86