Effect of magnetic field configuration on parallel plasma flow during neutral beam injection in Heliotron J

被引:5
|
作者
Lee, H. [1 ]
Kobayashi, S. [2 ]
Yokoyama, M. [3 ]
Mizuuchi, T. [2 ]
Minami, T. [1 ,2 ]
Harada, T. [1 ]
Nagasaki, K. [2 ]
Okada, H. [2 ]
Minami, T. [1 ,2 ]
Yamamoto, S. [2 ]
Murakami, S. [4 ]
Nakamura, Y. [1 ]
Konoshima, S. [2 ]
Ohshima, S. [2 ]
Zang, L. [1 ]
Sano, F. [2 ]
机构
[1] Kyoto Univ, Grad Sch Energy Sci, Uji, Kyoto 611011, Japan
[2] Kyoto Univ, Inst Adv Energy, Uji, Kyoto 611011, Japan
[3] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[4] Kyoto Univ, Grad Sch Engn, Kyoto 6068501, Japan
关键词
TOROIDAL PLASMAS; PLATEAU REGIME; VISCOSITY; TRANSPORT;
D O I
10.1088/0741-3335/55/3/035012
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effect of magnetic field configurations on plasma flow velocity was investigated by measuring the parallel flow velocity (v(parallel to)) using a charge-exchange recombination spectroscopy during neutral beam injection in three different toroidal mirror configurations of Heliotron J: high, standard and reversed mirror configurations. The magnetic ripple strengths, gamma, for these mirror configurations were gamma = 0.073 m(-1), 0.031 m(-1) and 0.027 m(-1), respectively, at the normalized averaged minor radius rho = 0.07. The magnetic ripple strength is defined as gamma = {<(partial derivative B/partial derivative l)(2)/B-2 >}(1/2), where <...> is the flux surface averaged value and l is the length along the magnetic field line. At rho = 0.07, the parallel flow velocity in the high mirror configuration (v(parallel to) similar to 4 km s(-1)) was 2-3 times smaller than those in the standard and reversed mirror configurations (v(parallel to) similar to 10-12 km s(-1)). An anticipated interpretation is that the difference in the neoclassical damping force contributes to the difference in v(parallel to) among the three mirror configurations.
引用
收藏
页数:8
相关论文
共 8 条
  • [1] Modeling of the ECCD injection effect on the Heliotron J and LHD plasma stability
    Varela, J.
    Nagasaki, K.
    Nagaoka, K.
    Yamamoto, S.
    Watanabe, K. Y.
    Spong, D. A.
    Garcia, L.
    Cappa, A.
    Azegami, A.
    NUCLEAR FUSION, 2020, 60 (11)
  • [2] Achievement of field-reversed configuration plasma sustainment via 10 MW neutral-beam injection on the C-2U device
    Gota, H.
    Binderbauer, M. W.
    Tajima, T.
    Putvinski, S.
    Tuszewski, M.
    Dettrick, S.
    Garate, E.
    Korepanov, S.
    Smirnov, A.
    Thompson, M. C.
    Trask, E.
    Yang, X.
    Schmitz, L.
    Lin, Z.
    Ivanov, A. A.
    Asai, T.
    Allfrey, I.
    Andow, R.
    Beall, M.
    Bolte, N.
    Bui, D. Q.
    Cappello, M.
    Ceccherini, F.
    Clary, R.
    Cheung, A. H.
    Conroy, K.
    Deng, B. H.
    Douglass, J.
    Dunaevsky, A.
    Feng, P.
    Fulton, D.
    Galeotti, L.
    Granstedt, E.
    Griswold, M.
    Gupta, D.
    Gupta, S.
    Hubbard, K.
    Isakov, I.
    Kinley, J. S.
    Knapp, K.
    Magee, R.
    Matvienko, V.
    Mendoza, R.
    Mok, Y.
    Necas, A.
    Primavera, S.
    Onofri, M.
    Osin, D.
    Rath, N.
    Roche, T.
    NUCLEAR FUSION, 2017, 57 (11)
  • [3] Drift-Alfven instabilities of a parallel shearing flow of the finite beta plasma with warm ions: The effect of the compressional magnetic field perturbations
    Mikhailenko, V. V.
    Mikhailenko, V. S.
    Lee, Hae June
    PHYSICS OF PLASMAS, 2017, 24 (09)
  • [4] On Analytical Solution of a Plasma Flow over a Moving Plate under the Effect of an Applied Magnetic Field
    Wahid, Taha Zakaraia Abdel
    Morad, Adel M.
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [5] Modeling and Analysis of Magnetic Nanoparticles Injection in Water-Oil Two-Phase Flow in Porous Media under Magnetic Field Effect
    El-Amin, Mohamed F.
    Saad, Ahmed M.
    Salama, Amgad
    Sun, Shuyu
    GEOFLUIDS, 2017,
  • [6] The combined kinetic effects of the ion temperature gradient and the velocity shear of a plasma flow parallel to the magnetic field on the drift-Alfven instabilities
    Mikhailenko, V. V.
    Mikhailenko, V. S.
    Lee, H. J.
    PHYSICS OF PLASMAS, 2020, 27 (11)
  • [7] Electron acceleration during three-dimensional relaxation of an electron beam-return current plasma system in a magnetic field
    Karlicky, M.
    Kontar, E. P.
    ASTRONOMY & ASTROPHYSICS, 2012, 544
  • [8] Numerical simulation of the magnetic field and Joule heating effects on force convection flow through parallel-plate microchannel in the presence of viscous dissipation effect
    Pordanjani, Ahmad Hajatzadeh
    Raisi, A.
    Ghasemi, B.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2019, 76 (06) : 499 - 516