On homogeneous geodesics and weakly symmetric spaces

被引:6
作者
Berestovskii, Valerii Nikolaevich [1 ,2 ]
Nikonorov, Yurii Gennadievich [3 ]
机构
[1] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Acad Koptyug Ave 4, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Mech Math Dept, Pirogov Str 1, Novosibirsk 630090, Russia
[3] Russian Acad Sci, Southern Math Inst, Vladikavkaz Sci Ctr, Markus Str 22, Vladikavkaz 362027, Russia
关键词
Geodesic orbit Riemannian space; Homogeneous Riemannian manifold; Homogeneous space; Quadratic mapping; Totally geodesic torus; Weakly symmetric space;
D O I
10.1007/s10455-018-9641-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a sufficient condition for a geodesic in a Riemannian manifold to be homogeneous, i.e. an orbit of an 1-parameter isometry group. As an application of this result, we provide a new proof of the fact that every weakly symmetric space is a geodesic orbit manifold, i.e. all its geodesics are homogeneous. We also study general properties of homogeneous geodesics, in particular, the structure of the closure of a given homogeneous geodesic. We present several examples where this closure is a torus of dimension 2 which is (respectively, is not) totally geodesic in the ambient manifold. Finally, we discuss homogeneous geodesics in Lie groups supplied with left-invariant Riemannian metrics.
引用
收藏
页码:575 / 589
页数:15
相关论文
共 50 条
[21]   CONVOLUTION AND HOMOGENEOUS SPACES [J].
Kamyabi-Gol, R. A. ;
Tavallaei, N. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2009, 35 (01) :129-146
[22]   On quasicompact homogeneous spaces [J].
Gorbatsevich, V. V. .
SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (02) :231-242
[23]   Homogeneous Spaces with Sections [J].
Andreas Kollross ;
Evangelia Samiou .
manuscripta mathematica, 2005, 116 :115-123
[24]   On quasicompact homogeneous spaces [J].
V. V. Gorbatsevich .
Siberian Mathematical Journal, 2013, 54 :231-242
[25]   The generalized weakly Ricci symmetric structure [J].
Kundu, Haradhan ;
Baishya, Kanak Kanti ;
Roy, Indranil .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (13)
[26]   Convolution and Involution on Function Spaces of Homogeneous Spaces [J].
Farashahi, Arash Ghaani .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (04) :1109-1122
[27]   Larotonda spaces: Homogeneous spaces and conditional expectations [J].
Andruchow, Esteban ;
Recht, Lazaro .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (02)
[28]   Multipliers on Lp-Spaces for Homogeneous Spaces [J].
Javanshiri, H. ;
Yousefiazar, V. ;
Sattari, M. H. .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (05) :1805-1813
[29]   Homogeneous spaces with inner metric and with integrable invariant distributions [J].
Berestovskii V.N. ;
Gorbatsevich V.V. .
Journal of Mathematical Sciences, 2015, 207 (3) :410-466
[30]   On the Ricci curvature of homogeneous metrics on noncompact homogeneous spaces [J].
Nikonorov, YG .
SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (02) :349-356