Plasma Science and Technology in the Limit of the Small: Microcavity Plasmas and Emerging Applications

被引:59
作者
Eden, J. G. [1 ]
Park, S. -J. [1 ]
Cho, J. H. [1 ]
Kim, M. H. [1 ]
Houlahan, T. J., Jr. [1 ]
Li, B. [2 ]
Kim, E. S. [2 ]
Kim, T. L. [2 ]
Lee, S. K. [2 ]
Kim, K. S. [2 ]
Yoon, J. K. [2 ]
Sung, S. H. [2 ]
Sun, P. [1 ]
Herring, C. M. [2 ]
Wagner, C. J. [2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Lab Opt Phys & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Microcavity plasma; microplasma; ARRAYS; DEVICES; OZONE; MICROPLASMAS; GENERATION; DISCHARGES; OXYGEN; AIR;
D O I
10.1109/TPS.2013.2253132
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Over approximately the past decade, a subfield of plasma science has arisen that is redefining frontiers in the physics of low temperature plasma and its applications. Concerned with the confinement of weakly ionized, nonequilibrium plasma to cavities having mesoscopic dimensions, the emerging area of microcavity plasmas has advanced rapidly in surpassing several milestones, primarily with respect to electron density and cavity geometries, and is establishing new avenues of research. To date, peak electron densities above 10(17) cm(-3), cavity dimensions as small as 3 mu m, microchannel aspect ratios (length: width) of 10(3): 1, plasma packets propagating at velocities up to 20 km s(-1), and coupling between e(-)-h(+) and e(-)-ion plasmas have all been observed, but every indication is that these results are only a foretaste of the future. This review describes several recent device geometries and provides a synopsis of the physics. Promising applications of this technology in chemical processing, lighting, water disinfection, and medicine are also discussed briefly.
引用
收藏
页码:661 / 675
页数:15
相关论文
共 29 条
[1]  
Becker K. H., 2008, LOW TEMPERATURE PLAS, V2
[2]   Microplasmas and applications [J].
Becker, KH ;
Schoenbach, KH ;
Eden, JG .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (03) :R55-R70
[3]   Predicted properties of microhollow cathode discharges in xenon [J].
Boeuf, JP ;
Pitchford, LC ;
Schoenbach, KH .
APPLIED PHYSICS LETTERS, 2005, 86 (07) :1-3
[4]   SELF-CHANNELING OF HIGH-PEAK-POWER FEMTOSECOND LASER-PULSES IN AIR [J].
BRAUN, A ;
KORN, G ;
LIU, X ;
DU, D ;
SQUIER, J ;
MOUROU, G .
OPTICS LETTERS, 1995, 20 (01) :73-75
[5]   Propagation and decay of low temperature plasma packets in arrays of dielectric microchannels [J].
Cho, J. H. ;
Park, S. -J. ;
Eden, J. G. .
APPLIED PHYSICS LETTERS, 2012, 101 (25)
[6]   Arrays of Microplasma Jets Generated by Double Parabolic Microcavities in an Hourglass Configuration [J].
Cho, J. H. ;
Kim, M. H. ;
Park, S. -J. ;
Eden, J. G. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) :2376-2377
[7]  
de Chadenedes M., 2010, P 46 AIAA ASME SAE A
[8]   Microplasma light tiles: thin sheet lamps for general illumination [J].
Eden, J. G. ;
Park, S-J ;
Herring, C. M. ;
Bulson, J. M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (22)
[9]   OZONE SYNTHESIS FROM OXYGEN IN DIELECTRIC BARRIER DISCHARGES [J].
ELIASSON, B ;
HIRTH, M ;
KOGELSCHATZ, U .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1987, 20 (11) :1421-1437
[10]   Excitation dynamics of a kHz driven micro-structured plasma channel device operated in argon [J].
Greb, A. ;
Boettner, H. ;
Winter, J. ;
Schulz-von der Gathen, V. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2011, 20 (05)