The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor

被引:129
作者
Hall, AE
Chen, QHG
Findell, JL
Schaller, GE
Bleecker, AB [1 ]
机构
[1] Univ Wisconsin, Dept Bot, Madison, WI 53706 USA
[2] Univ New Hampshire, Dept Biochem & Mol Biol, Durham, NH 03824 USA
关键词
D O I
10.1104/pp.121.1.291
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethylene responses in Arabidopsis are mediated by a small family of receptors, including the ETR1 gene product. Specific mutations in the N-terminal ethylene-binding domain of any family member lead to dominant ethylene insensitivity. To investigate the mechanism of ethylene insensitivity, we examined the effects of mutations on the ethylene-binding activity of the ETR1 protein expressed in yeast. The etr1-1 and etr1-4 mutations completely eliminated ethylene binding, while the etr1-3 mutation severely reduced binding. Additional site-directed mutations that disrupted ethylene binding in yeast also conferred dominant ethylene insensitivity when the mutated genes were transferred into wild-type Arabidopsis plants. By contrast, the etr1-2 mutation did not disrupt ethylene binding in yeast. These results indicate that dominant ethylene insensitivity may be conferred by mutations that disrupt ethylene binding or that uncouple ethylene binding from signal output by the receptor. Increased dosage of wild-type alleles in triploid lines led to the partial recovery of ethylene sensitivity, indicating that dominant ethylene insensitivity may involve either interactions between wildtype and mutant receptors or competition between mutant and wild-type receptors for downstream effecters.
引用
收藏
页码:291 / 299
页数:9
相关论文
共 27 条
[1]   The GAF domain: an evolutionary link between diverse phototransducing proteins [J].
Aravind, L ;
Ponting, CP .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (12) :458-459
[2]  
Ausubel F.A., 1997, CURRENT PROTOCOLS MO, DOI DOI 10.1.4
[3]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[4]   BINARY AGROBACTERIUM VECTORS FOR PLANT TRANSFORMATION [J].
BEVAN, M .
NUCLEIC ACIDS RESEARCH, 1984, 12 (22) :8711-8721
[5]   INSENSITIVITY TO ETHYLENE CONFERRED BY A DOMINANT MUTATION IN ARABIDOPSIS-THALIANA [J].
BLEECKER, AB ;
ESTELLE, MA ;
SOMERVILLE, C ;
KENDE, H .
SCIENCE, 1988, 241 (4869) :1086-1089
[6]   ARABIDOPSIS ETHYLENE-RESPONSE GENE ETR1 - SIMILARITY OF PRODUCT TO 2-COMPONENT REGULATORS [J].
CHANG, C ;
KWOK, SF ;
BLEECKER, AB ;
MEYEROWITZ, EM .
SCIENCE, 1993, 262 (5133) :539-544
[7]   ANALYSIS OF ETHYLENE SIGNAL-TRANSDUCTION KINETICS ASSOCIATED WITH SEEDLING-GROWTH RESPONSE AND CHITINASE INDUCTION IN WILD-TYPE AND MUTANT ARABIDOPSIS [J].
CHEN, QHG ;
BLEECKER, AB .
PLANT PHYSIOLOGY, 1995, 108 (02) :597-607
[8]   Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors [J].
Clark, KL ;
Larsen, PB ;
Wang, XX ;
Chang, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (09) :5401-5406
[9]   Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis [J].
Gamble, RL ;
Coonfield, ML ;
Schaller, GE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (13) :7825-7829
[10]   EXPLOITING THE TRIPLE RESPONSE OF ARABIDOPSIS TO IDENTIFY ETHYLENE-RELATED MUTANTS [J].
GUZMAN, P ;
ECKER, JR .
PLANT CELL, 1990, 2 (06) :513-523