Interlayer exciton dynamics in van der Waals heterostructures

被引:122
|
作者
Ovesen, Simon [1 ]
Brem, Samuel [1 ]
Linderalv, Christopher [1 ]
Kuisma, Mikael [1 ,2 ]
Korn, Tobias [3 ]
Erhart, Paul [1 ]
Selig, Malte [4 ]
Malic, Ermin [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] Univ Jyvaskyla, Nanosci Ctr, Dept Chem, Jyvaskyla 40014, Finland
[3] Univ Rostock, Inst Phys, D-18059 Rostock, Germany
[4] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
基金
瑞典研究理事会;
关键词
QUANTUM-THEORY; SEMICONDUCTOR; MONOLAYER; OPTOELECTRONICS;
D O I
10.1038/s42005-019-0122-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Atomically thin transition metal dichalcogenides can be stacked to van der Waals heterostructures enabling the design of new materials with tailored properties. The strong Coulomb interaction gives rise to interlayer excitons, where electrons and holes are spatially separated in different layers. In this work, we reveal the time- and momentum-dependent elementary processes behind the formation, thermalization and photoemission of interlayer excitons for the exemplary MoSe2-WSe2 heterostructure. We identify tunneling of holes from MoSe2 to WSe2 on a ps timescale as the crucial process for interlayer exciton formation. We also predict a drastic reduction of the formation time as a function of the interlayer energy offset suggesting that interlayer excitons can be externally tuned. Finally, we explain the experimental observation of a dominant photoluminescence from interlayer excitons despite the vanishingly small oscillator strength as a consequence of huge interlayer exciton occupations at low temperatures.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers
    Zhao, Mei
    Zhang, Wenting
    Liu, Manman
    Zou, Chao
    Yang, Keqin
    Yang, Yun
    Dong, Youqing
    Zhang, Lijie
    Huang, Shaoming
    NANO RESEARCH, 2016, 9 (12) : 3772 - 3780
  • [22] Interlayer Exciton-Phonon Bound State in Bi2Se3/Monolayer WS2 van der Waals Heterostructures
    Hennighausen, Zachariah
    Moon, Jisoo
    McCreary, Kathleen M.
    Li, Connie H.
    van 't Erve, Olaf M. J.
    Jonker, Berend T.
    ACS NANO, 2023, 17 (03) : 2529 - 2536
  • [23] Magnetic-field-induced Wigner crystallization of charged interlayer excitons in van der Waals heterostructures
    Bondarev, Igor V. V.
    Lozovik, Yurii E. E.
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [24] Engineering interlayer hybridization in van der Waals bilayers
    Barre, Elyse
    Dandu, Medha
    Kundu, Sudipta
    Sood, Aditya
    da Jornada, Felipe H.
    Raja, Archana
    NATURE REVIEWS MATERIALS, 2024, 9 (07) : 499 - 508
  • [25] Optical spectroscopy of excited exciton states in MoS2 monolayers in van der Waals heterostructures
    Robert, C.
    Semina, M. A.
    Cadiz, F.
    Manca, M.
    Courtade, E.
    Taniguchi, T.
    Watanabe, K.
    Cai, H.
    Tongay, S.
    Lassagne, B.
    Renucci, P.
    Amand, T.
    Marie, X.
    Glazov, M. M.
    Urbaszek, B.
    PHYSICAL REVIEW MATERIALS, 2018, 2 (01):
  • [26] Unfolding the band structure of van der Waals heterostructures
    Vailakis, Georgios
    Kopidakis, Georgios
    PHYSICAL REVIEW MATERIALS, 2023, 7 (02)
  • [27] Interlayer charge transfer in ReS2/WS2 van der Waals heterostructures
    Zereshki, Peymon
    Yao, Peng
    He, Dawei
    Wang, Yongsheng
    Zhao, Hui
    PHYSICAL REVIEW B, 2019, 99 (19)
  • [28] Van der Waals heterostructures for optoelectronics: Progress and prospects
    Liao, Wugang
    Huang, Yanting
    Wang, Huide
    Zhang, Han
    APPLIED MATERIALS TODAY, 2019, 16 : 435 - 455
  • [29] Viscous hydrodynamics of excitons in van der Waals heterostructures
    Mantsevich, V. N.
    Glazov, M. M.
    PHYSICAL REVIEW B, 2024, 110 (16)
  • [30] Strategy for transferring van der Waals materials and heterostructures
    Fan, Sidi
    Li, Xianxu
    Mondal, Ashok
    Wang, Wenjie
    Lee, Young Hee
    2D MATERIALS, 2024, 11 (03)