Galerkin methods for the 'Parabolic Equation' Dirichlet problem in a variable 2-D and 3-D topography

被引:3
作者
Antonopoulou, D. C. [1 ,2 ]
机构
[1] Univ Crete, Dept Appl Math, GR-71409 Iraklion, Crete, Greece
[2] FORTH, IACM, Athens, Greece
关键词
Galerkin methods; Crank-Nicolson schemes; Error estimates; Parabolic Equation; Underwater acoustics; Numerical experiments; BOUNDARY-CONDITIONS; UNDERWATER ACOUSTICS; PROPAGATION; BOTTOM; OCEAN; MODEL;
D O I
10.1016/j.apnum.2011.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem analyzed in this paper is a model for the Narrow Angle parabolic approximation of Helmholtz equation in environments in R-n, n = 2,3, of variable topography used in underwater acoustics. By applying a horizontal bottom transformation combined with an exponential one, we present this Schrodinger-type Dirichlet initial and boundary-value problem in a weak formulation and prove the uniqueness of weak solution. Further, we construct Galerkin semidiscrete and Crank-Nicolson fully discrete schemes. We prove stability of numerical solution, analyze the error and prove estimates of optimal order in the L-2-norm. For the 2-D case, we numerically verify the optimal order of accuracy and present numerical results for some standard Benchmark acoustical problems. (C) 2011 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 34
页数:18
相关论文
共 25 条
[1]   BOUNDARY-CONDITIONS FOR THE PARABOLIC EQUATION IN A RANGE-DEPENDENT DUCT [J].
ABRAHAMSSON, L ;
KREISS, HO .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1990, 87 (06) :2438-2441
[2]  
Akrivis G.D., 1990, B GREEK MATH SOC, V31, P19
[3]   Finite difference schemes for the "parabolic" equation in a variable depth environment with a rigid bottom boundary condition [J].
Akrivis, GD ;
Dougalis, VA ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (02) :539-565
[4]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[5]   Discontinuous Galerkin methods for the linear Schrodinger equation in non-cylindrical domains [J].
Antonopoulou, D. C. ;
Plexousakis, M. .
NUMERISCHE MATHEMATIK, 2010, 115 (04) :585-608
[6]   GALERKIN METHODS FOR PARABOLIC AND SCHRODINGER EQUATIONS WITH DYNAMICAL BOUNDARY CONDITIONS AND APPLICATIONS TO UNDERWATER ACOUSTICS [J].
Antonopoulou, D. C. ;
Dougalis, V. A. ;
Zouraris, G. E. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) :2752-2781
[7]  
Antonopoulou D. C., 2006, THESIS U ATHENS GREE
[8]   Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics [J].
Arnold, A ;
Ehrhardt, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 145 (02) :611-638
[9]   PARABOLIC WAVE-EQUATION APPROXIMATIONS IN HETEROGENEOUS MEDIA [J].
BAMBERGER, A ;
ENGQUIST, B ;
HALPERN, L ;
JOLY, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (01) :99-128