Analysis of a laminar-flow diffusional mixer for directed self-assembly of liposomes

被引:26
作者
Kennedy, Matthew J. [1 ,2 ]
Ladouceur, Harold D. [1 ]
Moeller, Tiffany [3 ]
Kirui, Dickson [4 ,5 ]
Batt, Carl A. [3 ]
机构
[1] USN, Res Lab, Div Chem, Washington, DC 20375 USA
[2] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY 14853 USA
[3] Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA
[4] Cornell Univ, Dept Biomed Engn, Ithaca, NY 14853 USA
[5] Methodist Hosp, Res Inst, Houston, TX 77030 USA
来源
BIOMICROFLUIDICS | 2012年 / 6卷 / 04期
基金
美国国家科学基金会;
关键词
biodiffusion; bioMEMS; finite element analysis; laminar flow; lipid bilayers; microfluidics; self-assembly; PROTEIN-FOLDING KINETICS; MICROFLUIDIC CHANNELS; QUANTITATIVE-ANALYSIS; MOLECULAR-DIFFUSION; MICROCHANNELS; MICROSCOPY; DEVICES; SIZE; TIME;
D O I
10.1063/1.4772602
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The present work describes the operation and simulation of a microfluidic laminar-flow mixer. Diffusive mixing takes place between a core solution containing lipids in ethanol and a sheath solution containing aqueous buffer, leading to self assembly of liposomes. Present device architecture hydrodynamically focuses the lipid solution into a cylindrical core positioned at the center of a microfluidic channel of 125 x 125-mu m(2) cross-section. Use of the device produces liposomes in the size range of 100-300 nm, with larger liposomes forming at greater ionic strength in the sheath solution and at lower lipid concentration in the core solution. Finite element simulations compute the concentration distributions of solutes at axial distances of greater than 100 channel widths. These simulations reduce computation time and enable computation at long axial distances by utilizing long hexahedral elements in the axial flow region and fine tetrahedral elements in the hydrodynamic focusing region. Present meshing technique is generally useful for simulation of long microfluidic channels and is fully implementable using comsol Multiphysics. Confocal microscopy provides experimental validation of the simulations using fluorescent solutions containing fluorescein or enhanced green fluorescent protein. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772602]
引用
收藏
页数:14
相关论文
共 46 条
  • [1] Microscale tipstreaming in a microfluidic flow focusing device
    Anna, Shelley L.
    Mayer, Hans C.
    [J]. PHYSICS OF FLUIDS, 2006, 18 (12)
  • [2] Studying enzymatic bioreactions in a millisecond microfluidic flow mixer
    Buchegger, Wolfgang
    Haller, Anna
    van den Driesche, Sander
    Kraft, Martin
    Lendl, Bernhard
    Vellekoop, Michael
    [J]. BIOMICROFLUIDICS, 2012, 6 (01):
  • [3] Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels
    Chang, Chih-Chang
    Huang, Zhi-Xiong
    Yang, Ruey-Jen
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (08) : 1479 - 1486
  • [4] Diffusion coefficient measurements in microfluidic devices
    Culbertson, CT
    Jacobson, SC
    Ramsey, JM
    [J]. TALANTA, 2002, 56 (02) : 365 - 373
  • [5] deBeer D, 1997, BIOTECHNOL BIOENG, V53, P151, DOI 10.1002/(SICI)1097-0290(19970120)53:2<151::AID-BIT4>3.0.CO
  • [6] 2-N
  • [7] Hierarchical self-assembly of actin in micro-confinements using microfluidics
    Deshpande, Siddharth
    Pfohl, Thomas
    [J]. BIOMICROFLUIDICS, 2012, 6 (03)
  • [8] Galambos P., 1998, MICR AN SYST P BANFF
  • [9] Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics
    Gambin, Yann
    Simonnet, Claire
    VanDelinder, Virginia
    Deniz, Ashok
    Groisman, Alex
    [J]. LAB ON A CHIP, 2010, 10 (05) : 598 - 609
  • [10] Molecular dynamics of biological probes by fluorescence correlation microscopy with two-photon excitation
    Guiot, E
    Enescu, M
    Arrio, B
    Johannin, G
    Roger, G
    Tosti, S
    Tfibel, F
    Mérola, F
    Brun, A
    Georges, P
    Fontaine-Aupart, MP
    [J]. JOURNAL OF FLUORESCENCE, 2000, 10 (04) : 413 - 419