Bounds on effective dynamic properties of elastic composites

被引:6
|
作者
Nemat-Nasser, Sia [1 ]
Srivastava, Ankit [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
关键词
Bounds; Effective dynamic properties; Metamaterials; Homogenization; VARIATIONAL-PRINCIPLES; WAVES; MEDIA; ELASTODYNAMICS; EQUATIONS; MODULI;
D O I
10.1016/j.jmps.2012.07.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present general, computable, improvable, and rigorous bounds for the total energy of a finite heterogeneous volume element Omega or a periodically distributed unit cell of an elastic composite of any known distribution of inhomogeneities of any geometry and elasticity, undergoing a harmonic motion at a fixed frequency or supporting a single-frequency Bloch-form elastic wave of a given wavevector. These bounds are rigorously valid for any consistent boundary conditions that produce in the finite sample or in the unit cell, either a common average strain or a common average momentum. No other restrictions are imposed. We do not assume statistical homogeneity or isotropy. Our approach is based on the Hashin-Shtrikman bounds in elastostatics, which have been shown to provide strict bounds for the overall elastic moduli commonly defined (or actually measured) using uniform boundary tractions and/or linear boundary displacements; i.e., boundary data corresponding to the overall uniform stress and/or uniform strain conditions. Here we present strict bounds for the dynamic frequency-dependent constitutive parameters of the composite and give explicit expressions for a direct calculation of these bounds. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:254 / 264
页数:11
相关论文
共 50 条
  • [31] Bounds on the Effective Anisotropic Elastic Constants
    S.C. Cowin
    G. Yang
    M.M. Mehrabadi
    Journal of Elasticity, 1999, 57 : 1 - 24
  • [32] Bounds on the effective anisotropic elastic constants
    Cowin, SC
    Yang, G
    Mehrabadi, MM
    JOURNAL OF ELASTICITY, 1999, 57 (01) : 1 - 24
  • [33] Bounds for effective properties of multimaterial two-dimensional conducting composites
    Cherkaev, Andrej
    MECHANICS OF MATERIALS, 2009, 41 (04) : 411 - 433
  • [34] Effective transverse elastic properties of unidirectional fiber reinforced composites
    Beicha, D.
    Kanit, T.
    Brunet, Y.
    Imad, A.
    El Moumen, A.
    Khelfaoui, Y.
    MECHANICS OF MATERIALS, 2016, 102 : 47 - 53
  • [35] Effective properties of layered magneto-electro-elastic composites
    Chen, ZR
    Yu, SW
    Meng, L
    Lin, Y
    COMPOSITE STRUCTURES, 2002, 57 (1-4) : 177 - 182
  • [36] EFFECTIVE ELASTIC PROPERTIES OF COMPOSITES WITH DISORIENTED ANISOTROPIC ELLIPSOIDAL INCLUSIONS
    KHOROSHUN, LP
    NAZARENKO, LV
    INTERNATIONAL APPLIED MECHANICS, 1992, 28 (12) : 801 - 808
  • [37] Effective Elastic Properties of Stochastic Granular Composites with Interfacial Defects
    Khoroshun L.P.
    International Applied Mechanics, 2017, 53 (5) : 574 - 587
  • [38] EFFECTIVE ELASTIC AND STRENGTH PROPERTIES OF UNIDIRECTIONAL FIBROUS CERAMIC COMPOSITES
    Valentova, S.
    Vorel, J.
    Sejnoha, M.
    ENGINEERING MECHANICS 2017, 2017, : 1010 - 1013
  • [39] On contribution of pores into the effective elastic properties of carbon/carbon composites
    Novak, J
    Tsukrov, I
    Piat, R
    Schnack, E
    INTERNATIONAL JOURNAL OF FRACTURE, 2002, 118 (02) : L31 - L36
  • [40] Effective elastic properties of random two-dimensional composites
    Drygas, Piotr
    Mityushev, Vladimir
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 97-98 : 543 - 553