Hierarchical assembly of the eggshell and permeability barrier in C. elegans

被引:90
|
作者
Olson, Sara K. [1 ]
Greenan, Garrett [2 ]
Desai, Arshad [1 ]
Mueller-Reichert, Thomas [3 ]
Oegema, Karen [1 ]
机构
[1] Univ Calif San Diego, Dept Cellular & Mol Med, Ludwig Inst Canc Res, La Jolla, CA 92093 USA
[2] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[3] Tech Univ Dresden, Med Theoret Ctr, D-01307 Dresden, Germany
来源
JOURNAL OF CELL BIOLOGY | 2012年 / 198卷 / 04期
基金
美国国家卫生研究院;
关键词
ASCARIS-LUMBRICOIDES NEMATODA; ANTERIOR-POSTERIOR AXIS; CAENORHABDITIS-ELEGANS; CHONDROITIN PROTEOGLYCANS; PROTEIN; FERTILIZATION; KINETOCHORE; COMPONENTS; EMBRYO; BIOSYNTHESIS;
D O I
10.1083/jcb.201206008
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In metazoans, fertilization triggers the assembly of an extracellular coat that constitutes the interface between the embryo and its environment. In nematodes, this coat is the eggshell, which provides mechanical rigidity, prevents polyspermy, and is impermeable to small molecules. Using immunoelectron microscopy, we found that the Caenorhabditis elegans eggshell was composed of an outer vitelline layer, a middle chitin layer, and an inner layer containing chondroitin proteoglycans. The switch between the chitin and proteoglycan layers was achieved by internalization of chitin synthase coincident with exocytosis of proteoglycan-containing cortical granules. Inner layer assembly did not make the zygote impermeable as previously proposed. Instead, correlative light and electron microscopy demonstrated that the permeability barrier was a distinct envelope that formed in a separate step that required fatty acid synthesis, the sugar-modifying enzyme PERM-1, and the acyl chain transfer enzyme DGTR-1. These findings delineate the hierarchy of eggshell assembly and define key molecular mechanisms at each step.
引用
收藏
页码:731 / 748
页数:18
相关论文
共 50 条
  • [41] C. elegans HeALTH
    Ellen Neff
    Lab Animal, 2020, 49 : 221 - 221
  • [42] Transgenesis in C. elegans
    Praitis, Vida
    Maduro, Morris F.
    CAENORHABDITIS ELEGANS: MOLECULAR GENETICS AND DEVELOPMENT, SECOND EDITION, 2011, 106 : 161 - 185
  • [43] C. elegans select
    Helen M Chamberlin
    Nature Methods, 2010, 7 : 693 - 695
  • [44] C. elegans select
    Chamberlin, Helen M.
    NATURE METHODS, 2010, 7 (09) : 693 - 695
  • [45] C. elegans and Ciliopathies
    不详
    ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 2011, 39 (03): : 204 - 205
  • [46] Molecular mechanisms for self-assembly of circuit pioneer cells in C. elegans brain assembly
    Sabou, L.
    Bhushan, M.
    Caroti, F.
    Kumar, A.
    Gandara, L.
    Crocker, J.
    Rapti, G.
    MOLECULAR BIOLOGY OF THE CELL, 2024, 35 (01) : 307 - 308
  • [47] Cracking the C-elegans Eggshell.
    Olson, S.
    Muller-Reichert, T.
    Oegema, K.
    MOLECULAR BIOLOGY OF THE CELL, 2012, 23
  • [48] MitoSNARE Assembly and Disassembly Factors Regulate Basal Autophagy and Aging in C. elegans
    Gkikas, Ilias
    Daskalaki, Ioanna
    Kounakis, Konstantinos
    Tavernarakis, Nektarios
    Lionaki, Eirini
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (04)
  • [49] Spindle assembly checkpoint proteins regulate and monitor meiotic synapsis in C. elegans
    Bohr, Tisha
    Nelson, Christian R.
    Klee, Erin
    Bhalla, Needhi
    JOURNAL OF CELL BIOLOGY, 2015, 211 (02): : 233 - 242
  • [50] GFP tagging interferes with Myosin Function and Sarcomere Assembly in C. elegans.
    Russell, M. B.
    Littlefield, R. S.
    Skipper, K.
    MOLECULAR BIOLOGY OF THE CELL, 2018, 29 (26)