Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles

被引:218
作者
Chen, Chao [1 ,2 ]
Xue, Yang [2 ]
Li, Zhi [3 ]
Wen, Yingfeng [2 ]
Li, Xiongwei [2 ]
Wu, Fan [2 ]
Li, Xiaojing [2 ]
Shi, Dean [1 ]
Xue, Zhigang [2 ]
Xie, Xiaolin [2 ]
机构
[1] Hubei Univ, Fac Mat Sci & Engn, Hubei Key Lab Polymer Mat,Hubei Collaborat Innova, Minist Educ,Key Lab Green Preparat & Applicat Fun, Wuhan 430062, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Minist Educ, Key Lab Mat Chem Energy Convers & Storage, Wuhan 430074, Hubei, Peoples R China
[3] IMDEA Mat Inst, C Eric Kandel 2, Madrid 28906, Spain
基金
中国国家自然科学基金;
关键词
Epoxy nanocomposites; Thermal conductivity; Interfacial thermal resistance; Boron nitride nanosheets; Mechanical properties; MECHANICAL-PROPERTIES; GRAPHENE DISPERSION; POLYMER COMPOSITES; UNDERFILL MATERIAL; INTERFACE; MATRIX; TRANSPORT; FUNCTIONALIZATION; POLYETHYLENE; FABRICATION;
D O I
10.1016/j.cej.2019.03.150
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polymer-based thermal conductive composites (PTCs) with good thermal and mechanical properties are highly appreciated in the thermal management of modern electronic devices. However, the heat transfer property of particle-filled PTCs is severely limited by the thermal resistance at both filler-matrix and filler-filler interfaces. Intensive efforts have been taken to enhance the filler-matrix interface, however, the effect of filler-filler thermal contact resistance on the heat transfer properties of PTCs is still not very clear. In this work, continuous thermal conductive networks with good filler-filler interface contact are formed in epoxy composites via the in-situ sintering of silver nanoparticles on the surface of boron nitride nanosheets (BNNS). In this composites, homogeneously dispersed and well exfoliated BN nanosheets are bridged to each other via the sintered AgNPs located at the BNNS and a 3D boron nitride nanosheets network is formed with solid Ag junctions lying in between. After thermal sintering process, the thermal conductivity of EP/BNNS@AgNPs composite with the 3D boron nitride nanosheets network increase from 0.95 W/m.K to 1.13 W/m.K at the filler loading of 20 wt%, which indicates that merged AgNPs are used as thermal transport junctions to reduce the thermal contact resistance within 3D BNNS networks. The present strategy provides an effective route for developing high-performance PTCs.
引用
收藏
页码:1150 / 1160
页数:11
相关论文
共 55 条
[1]   Polymer composite hydrogels containing carbon nanomaterials-Morphology and mechanical and functional performance [J].
Alam, Ashraful ;
Zhang, Yongjun ;
Kuan, Hsu-Chiang ;
Lee, Sang-Heon ;
Ma, Jun .
PROGRESS IN POLYMER SCIENCE, 2018, 77 :1-18
[2]   Edge-Grafted Molecular Junctions between Graphene Nanoplatelets: Applied Chemistry to Enhance Heat Transfer in Nanomaterials [J].
Bernal, Maria Mar ;
Di Pierro, Alessandro ;
Novara, Chiara ;
Giorgis, Fabrizio ;
Mortazavi, Bohayra ;
Saracco, Guido ;
Fina, Alberto .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (18)
[3]   Controlled Structure Evolution of Graphene Networks in Polymer Composites [J].
Boothroyd, Stephen C. ;
Johnson, David W. ;
Weir, Michael P. ;
Reynolds, Carl D. ;
Hart, James M. ;
Smith, Andrew J. ;
Clarke, Nigel ;
Thompson, Richard L. ;
Coleman, Karl S. .
CHEMISTRY OF MATERIALS, 2018, 30 (05) :1524-1531
[4]   Review of thermal conductivity in composites: Mechanisms, parameters and theory [J].
Burger, N. ;
Laachachi, A. ;
Ferriol, M. ;
Lutz, M. ;
Toniazzo, V. ;
Ruch, D. .
PROGRESS IN POLYMER SCIENCE, 2016, 61 :1-28
[5]   Growth of Large Single-Crystalline Monolayer Hexagonal Boron Nitride by Oxide-Assisted Chemical Vapor Deposition [J].
Chang, Ren-Jie ;
Wang, Xiaochen ;
Wang, Shanshan ;
Sheng, Yuewen ;
Porter, Ben ;
Bhaskaran, Harish ;
Warner, Jamie H. .
CHEMISTRY OF MATERIALS, 2017, 29 (15) :6252-6260
[6]   High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging [J].
Chen, Chao ;
Xue, Yang ;
Li, Xiongwei ;
Wen, Yingfeng ;
Liu, Jinwei ;
Xue, Zhigang ;
Shi, Dean ;
Zhou, Xingping ;
Xie, Xiaolin ;
Mai, Yiu-Wing .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 118 :67-74
[7]   Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/AgNWs nanocomposites [J].
Chen, Chao ;
Wang, Hongjian ;
Xue, Yang ;
Xue, Zhigang ;
Liu, Hongyuan ;
Xie, Xiaolin ;
Mai, Yiu-Wing .
COMPOSITES SCIENCE AND TECHNOLOGY, 2016, 128 :207-214
[8]   High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging [J].
Chen, Chao ;
Tang, Yongjun ;
Ye, Yun Sheng ;
Xue, Zhigang ;
Xue, Yang ;
Xie, Xiaolin ;
Mai, Yiu-Wing .
COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 105 :80-85
[9]   Thermal conductivity of polymer-based composites: Fundamentals and applications [J].
Chen, Hongyu ;
Ginzburg, Valeriy V. ;
Yang, Jian ;
Yang, Yunfeng ;
Liu, Wei ;
Huang, Yan ;
Du, Libo ;
Chen, Bin .
PROGRESS IN POLYMER SCIENCE, 2016, 59 :41-85
[10]   Superlow Thermal Conductivity 3D Carbon Nanotube Network for Thermoelectric Applications [J].
Chen, Jikun ;
Gui, Xuchun ;
Wang, Zewei ;
Li, Zhen ;
Xiang, Rong ;
Wang, Kunlin ;
Wu, Dehai ;
Xia, Xugui ;
Zhou, Yanfei ;
Wang, Qun ;
Tang, Zikang ;
Chen, Lidong .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (01) :81-86